These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
333 related articles for article (PubMed ID: 31669585)
21. Borrelia burgdorferi glycosaminoglycan-binding proteins: a potential target for new therapeutics against Lyme disease. Lin YP; Li L; Zhang F; Linhardt RJ Microbiology (Reading); 2017 Dec; 163(12):1759-1766. PubMed ID: 29116038 [TBL] [Abstract][Full Text] [Related]
22. Structural rationale for the affinity of pico- and femtomolar transition state analogues of Escherichia coli 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase. Lee JE; Singh V; Evans GB; Tyler PC; Furneaux RH; Cornell KA; Riscoe MK; Schramm VL; Howell PL J Biol Chem; 2005 May; 280(18):18274-82. PubMed ID: 15746096 [TBL] [Abstract][Full Text] [Related]
23. Antibiotic treatment of animals infected with Borrelia burgdorferi. Wormser GP; Schwartz I Clin Microbiol Rev; 2009 Jul; 22(3):387-95. PubMed ID: 19597005 [TBL] [Abstract][Full Text] [Related]
24. Salmonella enterica MTAN at 1.36 Å resolution: a structure-based design of tailored transition state analogs. Haapalainen AM; Thomas K; Tyler PC; Evans GB; Almo SC; Schramm VL Structure; 2013 Jun; 21(6):963-74. PubMed ID: 23685211 [TBL] [Abstract][Full Text] [Related]
25. Structure of Escherichia coli 5'-methylthioadenosine/ S-adenosylhomocysteine nucleosidase inhibitor complexes provide insight into the conformational changes required for substrate binding and catalysis. Lee JE; Cornell KA; Riscoe MK; Howell PL J Biol Chem; 2003 Mar; 278(10):8761-70. PubMed ID: 12496243 [TBL] [Abstract][Full Text] [Related]
26. Stationary phase persister/biofilm microcolony of Borrelia burgdorferi causes more severe disease in a mouse model of Lyme arthritis: implications for understanding persistence, Post-treatment Lyme Disease Syndrome (PTLDS), and treatment failure. Feng J; Li T; Yee R; Yuan Y; Bai C; Cai M; Shi W; Embers M; Brayton C; Saeki H; Gabrielson K; Zhang Y Discov Med; 2019 Mar; 27(148):125-138. PubMed ID: 30946803 [TBL] [Abstract][Full Text] [Related]
27. Role of aggrecanase 1 in Lyme arthritis. Behera AK; Hildebrand E; Szafranski J; Hung HH; Grodzinsky AJ; Lafyatis R; Koch AE; Kalish R; Perides G; Steere AC; Hu LT Arthritis Rheum; 2006 Oct; 54(10):3319-29. PubMed ID: 17009305 [TBL] [Abstract][Full Text] [Related]
28. Failure of topical antibiotics to prevent disseminated Borrelia burgdorferi infection following a tick bite in C3H/HeJ mice. Wormser GP; Daniels TJ; Bittker S; Cooper D; Wang G; Pavia CS J Infect Dis; 2012 Mar; 205(6):991-4. PubMed ID: 21930606 [TBL] [Abstract][Full Text] [Related]
29. Antibodies to OspC, OspF and C6 antigens as indicators for infection with Borrelia burgdorferi in horses. Wagner B; Goodman LB; Rollins A; Freer HS Equine Vet J; 2013 Sep; 45(5):533-7. PubMed ID: 23432019 [TBL] [Abstract][Full Text] [Related]
30. Methylthioadenosine/S-adenosylhomocysteine nucleosidase, a critical enzyme for bacterial metabolism. Parveen N; Cornell KA Mol Microbiol; 2011 Jan; 79(1):7-20. PubMed ID: 21166890 [TBL] [Abstract][Full Text] [Related]
31. Standardised in vitro susceptibility testing of Borrelia burgdorferi against well-known and newly developed antimicrobial agents--possible implications for new therapeutic approaches to Lyme disease. Hunfeld KP; Kraiczy P; Kekoukh E; Schäfer V; Brade V Int J Med Microbiol; 2002 Jun; 291 Suppl 33():125-37. PubMed ID: 12141737 [TBL] [Abstract][Full Text] [Related]
32. Molecular determinants of substrate specificity in plant 5'-methylthioadenosine nucleosidases. Siu KK; Lee JE; Sufrin JR; Moffatt BA; McMillan M; Cornell KA; Isom C; Howell PL J Mol Biol; 2008 Apr; 378(1):112-28. PubMed ID: 18342331 [TBL] [Abstract][Full Text] [Related]
33. Antibody responses to Borrelia burgdorferi in patients with antibiotic-refractory, antibiotic-responsive, or non-antibiotic-treated Lyme arthritis. Kannian P; McHugh G; Johnson BJ; Bacon RM; Glickstein LJ; Steere AC Arthritis Rheum; 2007 Dec; 56(12):4216-25. PubMed ID: 18050219 [TBL] [Abstract][Full Text] [Related]
34. Synthesis of a Putnik R; Zhou J; Irnov I; Garner E; Liu M; Bersch KL; Jacobs-Wagner C; Grimes CL Molecules; 2024 Jul; 29(14):. PubMed ID: 39064876 [TBL] [Abstract][Full Text] [Related]
36. Detection of Bioluminescent Borrelia burgdorferi from In Vitro Cultivation and During Murine Infection. Hyde JA; Skare JT Methods Mol Biol; 2018; 1690():241-257. PubMed ID: 29032549 [TBL] [Abstract][Full Text] [Related]
37. Disruption of bbe02 by Insertion of a Luciferase Gene Increases Transformation Efficiency of Borrelia burgdorferi and Allows Live Imaging in Lyme Disease Susceptible C3H Mice. Chan K; Alter L; Barthold SW; Parveen N PLoS One; 2015; 10(6):e0129532. PubMed ID: 26069970 [TBL] [Abstract][Full Text] [Related]
39. Effect of dapsone alone and in combination with intracellular antibiotics against the biofilm form of B. burgdorferi. Horowitz RI; Murali K; Gaur G; Freeman PR; Sapi E BMC Res Notes; 2020 Sep; 13(1):455. PubMed ID: 32993780 [TBL] [Abstract][Full Text] [Related]
40. Structural comparison of MTA phosphorylase and MTA/AdoHcy nucleosidase explains substrate preferences and identifies regions exploitable for inhibitor design. Lee JE; Settembre EC; Cornell KA; Riscoe MK; Sufrin JR; Ealick SE; Howell PL Biochemistry; 2004 May; 43(18):5159-69. PubMed ID: 15122881 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]