BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1164 related articles for article (PubMed ID: 31669758)

  • 1. Cascaded deep convolutional encoder-decoder neural networks for efficient liver tumor segmentation.
    Budak Ü; Guo Y; Tanyildizi E; Şengür A
    Med Hypotheses; 2020 Jan; 134():109431. PubMed ID: 31669758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Liver tissue segmentation in multiphase CT scans using cascaded convolutional neural networks.
    Ouhmich F; Agnus V; Noblet V; Heitz F; Pessaux P
    Int J Comput Assist Radiol Surg; 2019 Aug; 14(8):1275-1284. PubMed ID: 31041697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liver tumor segmentation based on 3D convolutional neural network with dual scale.
    Meng L; Tian Y; Bu S
    J Appl Clin Med Phys; 2020 Jan; 21(1):144-157. PubMed ID: 31793212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liver Tumor Segmentation in CT Scans Using Modified SegNet.
    Almotairi S; Kareem G; Aouf M; Almutairi B; Salem MA
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32164153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Abdominal multi-organ segmentation with cascaded convolutional and adversarial deep networks.
    Conze PH; Kavur AE; Cornec-Le Gall E; Gezer NS; Le Meur Y; Selver MA; Rousseau F
    Artif Intell Med; 2021 Jul; 117():102109. PubMed ID: 34127239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic liver segmentation by integrating fully convolutional networks into active contour models.
    Guo X; Schwartz LH; Zhao B
    Med Phys; 2019 Oct; 46(10):4455-4469. PubMed ID: 31356688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.
    Tong N; Gou S; Yang S; Ruan D; Sheng K
    Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SADSNet: A robust 3D synchronous segmentation network for liver and liver tumors based on spatial attention mechanism and deep supervision.
    Yang S; Liang Y; Wu S; Sun P; Chen Z
    J Xray Sci Technol; 2024; 32(3):707-723. PubMed ID: 38552134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A dense multi-path decoder for tissue segmentation in histopathology images.
    Vu QD; Kwak JT
    Comput Methods Programs Biomed; 2019 May; 173():119-129. PubMed ID: 31046986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An application of cascaded 3D fully convolutional networks for medical image segmentation.
    Roth HR; Oda H; Zhou X; Shimizu N; Yang Y; Hayashi Y; Oda M; Fujiwara M; Misawa K; Mori K
    Comput Med Imaging Graph; 2018 Jun; 66():90-99. PubMed ID: 29573583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel adaptive cubic quasi-Newton optimizer for deep learning based medical image analysis tasks, validated on detection of COVID-19 and segmentation for COVID-19 lung infection, liver tumor, and optic disc/cup.
    Liu Y; Zhang M; Zhong Z; Zeng X
    Med Phys; 2023 Mar; 50(3):1528-1538. PubMed ID: 36057788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multiple-channel and atrous convolution network for ultrasound image segmentation.
    Zhang L; Zhang J; Li Z; Song Y
    Med Phys; 2020 Dec; 47(12):6270-6285. PubMed ID: 33007105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the automatic segmentation of multiple organs at risk in CT images of lung cancer between deep convolutional neural network-based and atlas-based techniques.
    Zhu J; Zhang J; Qiu B; Liu Y; Liu X; Chen L
    Acta Oncol; 2019 Feb; 58(2):257-264. PubMed ID: 30398090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A deep learning-based framework (Co-ReTr) for auto-segmentation of non-small cell-lung cancer in computed tomography images.
    Kunkyab T; Bahrami Z; Zhang H; Liu Z; Hyde D
    J Appl Clin Med Phys; 2024 Mar; 25(3):e14297. PubMed ID: 38373289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Breast ultrasound image segmentation: A coarse-to-fine fusion convolutional neural network.
    Wang K; Liang S; Zhong S; Feng Q; Ning Z; Zhang Y
    Med Phys; 2021 Aug; 48(8):4262-4278. PubMed ID: 34053092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recurrent Convolutional Neural Networks for 3D Mandible Segmentation in Computed Tomography.
    Qiu B; Guo J; Kraeima J; Glas HH; Zhang W; Borra RJH; Witjes MJH; van Ooijen PMA
    J Pers Med; 2021 May; 11(6):. PubMed ID: 34072714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A deep learning- and partial least square regression-based model observer for a low-contrast lesion detection task in CT.
    Gong H; Yu L; Leng S; Dilger SK; Ren L; Zhou W; Fletcher JG; McCollough CH
    Med Phys; 2019 May; 46(5):2052-2063. PubMed ID: 30889282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ABCNet: A new efficient 3D dense-structure network for segmentation and analysis of body tissue composition on body-torso-wide CT images.
    Liu T; Pan J; Torigian DA; Xu P; Miao Q; Tong Y; Udupa JK
    Med Phys; 2020 Jul; 47(7):2986-2999. PubMed ID: 32170754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation.
    Roth HR; Lu L; Lay N; Harrison AP; Farag A; Sohn A; Summers RM
    Med Image Anal; 2018 Apr; 45():94-107. PubMed ID: 29427897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CheXLocNet: Automatic localization of pneumothorax in chest radiographs using deep convolutional neural networks.
    Wang H; Gu H; Qin P; Wang J
    PLoS One; 2020; 15(11):e0242013. PubMed ID: 33166371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 59.