BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 31669879)

  • 1. Bcl-2 mediates coelomocytes apoptosis by suppressing cytochrome c release in Vibrio splendidus challenged Apostichopus japonicus.
    Guo M; Chen K; Lv Z; Shao Y; Zhang W; Zhao X; Li C
    Dev Comp Immunol; 2020 Feb; 103():103533. PubMed ID: 31669879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A second FADD mediates coelomocyte apoptosis response to Vibrio splendidus infection in sea cucumber Apostichopus japonicus.
    Wang Y; Diao J; Wang B; Xu X; Gui M; Li C; Guo M
    Fish Shellfish Immunol; 2022 Aug; 127():396-404. PubMed ID: 35777710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning and functional analysis the first NLRC4-like gene from the sea cucumber Apostichopus japonicus.
    Chen K; Lv Z; Shao Y; Guo M; Li C
    Dev Comp Immunol; 2020 Mar; 104():103541. PubMed ID: 31733219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyclophilin A mediates coelomocyte apoptosis via the NF-κB/Bcl-2 signaling pathway in Apostichopus japonicus.
    Liu J; Zhao X; Lv Z; Guo M; Li C
    Dev Comp Immunol; 2020 Jun; 107():103657. PubMed ID: 32089518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. miR-137 modulates coelomocyte apoptosis by targeting 14-3-3ζ in the sea cucumber Apostichopus japonicus.
    Lv M; Chen H; Shao Y; Li C; Xu W; Zhang W; Zhao X; Duan X
    Dev Comp Immunol; 2017 Feb; 67():86-96. PubMed ID: 27832949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic identification of differentially expressed proteins in sea cucumber Apostichopus japonicus coelomocytes after Vibrio splendidus infection.
    Zhang P; Li C; Li Y; Zhang P; Shao Y; Jin C; Li T
    Dev Comp Immunol; 2014 Jun; 44(2):370-7. PubMed ID: 24468075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide synthase regulates coelomocytes apoptosis through the NF-κB signaling pathway in the sea cucumber Apostichopus japonicus.
    Guanghui H; Zhimeng L; Yina S; Chenghua L
    Fish Shellfish Immunol; 2023 Oct; 141():109027. PubMed ID: 37633344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of two regulators of the TNF-α signaling pathway in Apostichopus japonicus: LPS-induced TNF-α factor and baculoviral inhibitor of apoptosis repeat-containing 2.
    Zhang X; Zhang P; Li C; Li Y; Jin C; Zhang W
    Dev Comp Immunol; 2015 Jan; 48(1):138-42. PubMed ID: 25307203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CHOP promotes coelomocyte apoptosis through p38-MAPK pathway in Vibrio splendidus-challenged sea cucumber Apostichopus japonicus.
    Li D; Guo M; Liang W; Jin C; Li C
    Fish Shellfish Immunol; 2023 Jul; 138():108855. PubMed ID: 37257572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bax functions as coelomocyte apoptosis regulator in the sea cucumber Apostichopus japonicus.
    Guo M; Lv M; Shao Y; Zhang W; Zhao X; Li C
    Dev Comp Immunol; 2020 Jan; 102():103490. PubMed ID: 31494220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. β-Integrin mediates LPS-induced coelomocyte apoptosis in sea cucumber Apostichopus japonicus via the integrin/FAK/caspase-3 signaling pathway.
    Wang Z; Li C; Xing R; Shao Y; Zhao X; Zhang W; Guo M
    Dev Comp Immunol; 2019 Feb; 91():26-36. PubMed ID: 30339873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of potential probiotic Bacillus subtilis T13 on growth, immunity and disease resistance against Vibrio splendidus infection in juvenile sea cucumber Apostichopus japonicus.
    Zhao Y; Zhang W; Xu W; Mai K; Zhang Y; Liufu Z
    Fish Shellfish Immunol; 2012 May; 32(5):750-5. PubMed ID: 22342649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NEDD4 activates mitophagy by interacting with LC3 to restrain reactive oxygen species and apoptosis in Apostichopus japonicus challenged with Vibrio splendidus.
    Xiang Y; Duan X; Shao Y; Sun L
    Fish Shellfish Immunol; 2023 Oct; 141():109037. PubMed ID: 37640120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and functional characterization of natural resistance-associated macrophage protein 2 from sea cucumber Apostichopus japonicus.
    Huang B; Lv Z; Li Y; Li C
    Dev Comp Immunol; 2021 Jan; 114():103835. PubMed ID: 32841622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fas-associated death domain (FADD) in sea cucumber (Apostichopus japonicus): Molecular cloning, characterization and pro-apoptotic function analysis.
    Zhao Y; Guo M; Lv Z; Zhang W; Shao Y; Zhao X; Li C
    Dev Comp Immunol; 2020 Jul; 108():103673. PubMed ID: 32174442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A cyclophilin A (CypA) from Apostichopus japonicus modulates NF-κB translocation as a cofactor.
    Liu J; Guo M; Lv Z; Wang Z; Shao Y; Li C
    Fish Shellfish Immunol; 2020 Mar; 98():728-737. PubMed ID: 31740398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular cloning, biological description, and functional analysis of Ajfos transcription factor in pathogen-induced Apostichopus japonicus.
    Ren Y; Xu Y; Wang Z; Wang Y; Zhang J; Li Z; Chen Y; Go W; Javed MT; Li Q
    Comp Biochem Physiol C Toxicol Pharmacol; 2024 Feb; 276():109814. PubMed ID: 38065305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and functional characterization of TNF receptor associated factor 3 in the sea cucumber Apostichopus japonicus.
    Yang L; Chang Y; Wang Y; Wei J; Ge C; Song J
    Dev Comp Immunol; 2016 Jun; 59():128-35. PubMed ID: 26828393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of dietary Bacillus subtilis and fructooligosaccharide on the growth performance, non-specific immunity of sea cucumber, Apostichopus japonicus.
    Zhang Q; Ma H; Mai K; Zhang W; Liufu Z; Xu W
    Fish Shellfish Immunol; 2010 Aug; 29(2):204-11. PubMed ID: 20371291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and characterization of two lipopolysaccharide-binding protein/bactericidal permeability-increasing protein (LBP/BPI) genes from the sea cucumber Apostichopus japonicus with diversified function in modulating ROS production.
    Shao Y; Li C; Che Z; Zhang P; Zhang W; Duan X; Li Y
    Dev Comp Immunol; 2015 Sep; 52(1):88-97. PubMed ID: 25956196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.