These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 31669919)
1. Stabilizing effect of the rib cage on adjacent segment motion following thoracolumbar posterior fixation of the human thoracic cadaveric spine: A biomechanical study. Rahm MD; Brooks DM; Harris JA; Hart RA; Hughes JL; Ferrick BJ; Bucklen BS Clin Biomech (Bristol); 2019 Dec; 70():217-222. PubMed ID: 31669919 [TBL] [Abstract][Full Text] [Related]
2. Biomechanical evaluation of a simulated T-9 burst fracture of the thoracic spine with an intact rib cage. Perry TG; Mageswaran P; Colbrunn RW; Bonner TF; Francis T; McLain RF J Neurosurg Spine; 2014 Sep; 21(3):481-8. PubMed ID: 24949903 [TBL] [Abstract][Full Text] [Related]
3. In vitro comparison of personalized 3D printed versus standard expandable titanium vertebral body replacement implants in the mid-thoracic spine using entire rib cage specimens. Liebsch C; Aleinikov V; Kerimbayev T; Akshulakov S; Kocak T; Vogt M; Jansen JU; Wilke HJ Clin Biomech (Bristol); 2020 Aug; 78():105070. PubMed ID: 32531440 [TBL] [Abstract][Full Text] [Related]
4. Mechanical Contribution of the Rib Cage in the Human Cadaveric Thoracic Spine. Mannen EM; Anderson JT; Arnold PM; Friis EA Spine (Phila Pa 1976); 2015 Jul; 40(13):E760-6. PubMed ID: 25768687 [TBL] [Abstract][Full Text] [Related]
5. Biomechanical contribution of transverse connectors to segmental stability following long segment instrumentation with thoracic pedicle screws. Kuklo TR; Dmitriev AE; Cardoso MJ; Lehman RA; Erickson M; Gill NW Spine (Phila Pa 1976); 2008 Jul; 33(15):E482-7. PubMed ID: 18594445 [TBL] [Abstract][Full Text] [Related]
6. Effect of follower load on motion and stiffness of the human thoracic spine with intact rib cage. Sis HL; Mannen EM; Wong BM; Cadel ES; Bouxsein ML; Anderson DE; Friis EA J Biomech; 2016 Oct; 49(14):3252-3259. PubMed ID: 27545081 [TBL] [Abstract][Full Text] [Related]
7. The rib cage stiffens the thoracic spine in a cadaveric model with body weight load under dynamic moments. Mannen EM; Friis EA; Sis HL; Wong BM; Cadel ES; Anderson DE J Mech Behav Biomed Mater; 2018 Aug; 84():258-264. PubMed ID: 29852313 [TBL] [Abstract][Full Text] [Related]
8. Biomechanical contribution of the rib cage to thoracic stability. Brasiliense LB; Lazaro BC; Reyes PM; Dogan S; Theodore N; Crawford NR Spine (Phila Pa 1976); 2011 Dec; 36(26):E1686-93. PubMed ID: 22138782 [TBL] [Abstract][Full Text] [Related]
9. The effect of spinal instrumentation on kinematics at the cervicothoracic junction: emphasis on soft-tissue response in an in vitro human cadaveric model. Kretzer RM; Hu N; Umekoji H; Sciubba DM; Jallo GI; McAfee PC; Tortolani PJ; Cunningham BW J Neurosurg Spine; 2010 Oct; 13(4):435-42. PubMed ID: 20887140 [TBL] [Abstract][Full Text] [Related]
10. Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spine. Harris BM; Hilibrand AS; Savas PE; Pellegrino A; Vaccaro AR; Siegler S; Albert TJ Spine (Phila Pa 1976); 2004 Feb; 29(4):E65-70. PubMed ID: 15094547 [TBL] [Abstract][Full Text] [Related]
11. Mechanical analysis of the human cadaveric thoracic spine with intact rib cage. Mannen EM; Anderson JT; Arnold PM; Friis EA J Biomech; 2015 Jul; 48(10):2060-6. PubMed ID: 25912664 [TBL] [Abstract][Full Text] [Related]
12. The rib cage reduces intervertebral disc pressures in cadaveric thoracic spines by sharing loading under applied dynamic moments. Anderson DE; Mannen EM; Tromp R; Wong BM; Sis HL; Cadel ES; Friis EA; Bouxsein ML J Biomech; 2018 Mar; 70():262-266. PubMed ID: 29106896 [TBL] [Abstract][Full Text] [Related]
13. Biomechanical role of the intervertebral disc and costovertebral joint in stability of the thoracic spine. A canine model study. Takeuchi T; Abumi K; Shono Y; Oda I; Kaneda K Spine (Phila Pa 1976); 1999 Jul; 24(14):1414-20. PubMed ID: 10423785 [TBL] [Abstract][Full Text] [Related]
14. In vitro analysis of kinematics and elastostatics of the human rib cage during thoracic spinal movement for the validation of numerical models. Liebsch C; Graf N; Wilke HJ J Biomech; 2019 Sep; 94():147-157. PubMed ID: 31420155 [TBL] [Abstract][Full Text] [Related]
15. Biomechanical analysis of the upper thoracic spine after decompressive procedures. Healy AT; Lubelski D; Mageswaran P; Bhowmick DA; Bartsch AJ; Benzel EC; Mroz TE Spine J; 2014 Jun; 14(6):1010-6. PubMed ID: 24291701 [TBL] [Abstract][Full Text] [Related]
16. Biomechanical analysis of anterior versus posterior instrumentation following a thoracolumbar corpectomy: Laboratory investigation. Viljoen SV; DeVries Watson NA; Grosland NM; Torner J; Dalm B; Hitchon PW J Neurosurg Spine; 2014 Oct; 21(4):577-81. PubMed ID: 25084029 [TBL] [Abstract][Full Text] [Related]
17. Biomechanical comparison of costotransverse process screw fixation and pedicle screw fixation of the upper thoracic spine. Little AS; Brasiliense LB; Lazaro BC; Reyes PM; Dickman CA; Crawford NR Neurosurgery; 2010 Mar; 66(3 Suppl Operative):178-82; discussion 182. PubMed ID: 20173568 [TBL] [Abstract][Full Text] [Related]
18. Biomechanical comparison of single- and two-level cervical arthroplasty versus arthrodesis: effect on adjacent-level spinal kinematics. Cunningham BW; Hu N; Zorn CM; McAfee PC Spine J; 2010 Apr; 10(4):341-9. PubMed ID: 20362252 [TBL] [Abstract][Full Text] [Related]
19. EUROSPINE 2016 FULL PAPER AWARD: Wire cerclage can restore the stability of the thoracic spine after median sternotomy: an in vitro study with entire rib cage specimens. Liebsch C; Graf N; Wilke HJ Eur Spine J; 2017 May; 26(5):1401-1407. PubMed ID: 27639711 [TBL] [Abstract][Full Text] [Related]
20. Biomechanics of lateral plate and pedicle screw constructs in lumbar spines instrumented at two levels with laterally placed interbody cages. Nayak AN; Gutierrez S; Billys JB; Santoni BG; Castellvi AE Spine J; 2013 Oct; 13(10):1331-8. PubMed ID: 23685215 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]