These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 3167000)
1. Role of arginine-292 in the substrate specificity of aspartate aminotransferase as examined by site-directed mutagenesis. Cronin CN; Kirsch JF Biochemistry; 1988 Jun; 27(12):4572-9. PubMed ID: 3167000 [TBL] [Abstract][Full Text] [Related]
2. Noncoded amino acid replacement probes of the aspartate aminotransferase mechanism. Park Y; Luo J; Schultz PG; Kirsch JF Biochemistry; 1997 Aug; 36(34):10517-25. PubMed ID: 9265632 [TBL] [Abstract][Full Text] [Related]
3. Active-site Arg --> Lys substitutions alter reaction and substrate specificity of aspartate aminotransferase. Vacca RA; Giannattasio S; Graber R; Sandmeier E; Marra E; Christen P J Biol Chem; 1997 Aug; 272(35):21932-7. PubMed ID: 9268327 [TBL] [Abstract][Full Text] [Related]
5. Chemical modification of a functional arginyl residue (Arg 292) of mitochondrial aspartate aminotransferase. Identification as the binding site for the distal carboxylate group of the substrate. Sandmeier E; Christen P J Biol Chem; 1982 Jun; 257(12):6745-50. PubMed ID: 7085600 [TBL] [Abstract][Full Text] [Related]
6. Substitution of apolar residues in the active site of aspartate aminotransferase by histidine. Effects on reaction and substrate specificity. Vacca RA; Christen P; Malashkevich VN; Jansonius JN; Sandmeier E Eur J Biochem; 1995 Jan; 227(1-2):481-7. PubMed ID: 7851426 [TBL] [Abstract][Full Text] [Related]
7. The structural basis for the altered substrate specificity of the R292D active site mutant of aspartate aminotransferase from E. coli. Almo SC; Smith DL; Danishefsky AT; Ringe D Protein Eng; 1994 Mar; 7(3):405-12. PubMed ID: 7909946 [TBL] [Abstract][Full Text] [Related]
8. L-arginine binding to liver arginase requires proton transfer to gateway residue His141 and coordination of the guanidinium group to the dimanganese(II,II) center. Khangulov SV; Sossong TM; Ash DE; Dismukes GC Biochemistry; 1998 Jun; 37(23):8539-50. PubMed ID: 9622506 [TBL] [Abstract][Full Text] [Related]
9. [Arg292----Val] or [Arg292----Leu] mutation enhances the reactivity of Escherichia coli aspartate aminotransferase with aromatic amino acids. Hayashi H; Kuramitsu S; Inoue Y; Morino Y; Kagamiyama H Biochem Biophys Res Commun; 1989 Feb; 159(1):337-42. PubMed ID: 2564274 [TBL] [Abstract][Full Text] [Related]
10. Stereospecific labilization of the C-4' pro-S hydrogen of pyridoxamine 5'-phosphate in aspartate aminotransferase. Activators and inhibitors. Tobler HP; Gehring H; Christen P J Biol Chem; 1987 Jul; 262(19):8985-9. PubMed ID: 2885326 [TBL] [Abstract][Full Text] [Related]
11. Replacement of an interdomain residue Val39 of Escherichia coli aspartate aminotransferase affects the catalytic competence without altering the substrate specificity of the enzyme. Hayashi H; Kuramitsu S; Kagamiyama H J Biochem; 1991 May; 109(5):699-704. PubMed ID: 1917893 [TBL] [Abstract][Full Text] [Related]
12. The open/closed conformational equilibrium of aspartate aminotransferase. Studies in the crystalline state and with a fluorescent probe in solution. Picot D; Sandmeier E; Thaller C; Vincent MG; Christen P; Jansonius JN Eur J Biochem; 1991 Mar; 196(2):329-41. PubMed ID: 2007402 [TBL] [Abstract][Full Text] [Related]
13. Changing the reaction specificity of a pyridoxal-5'-phosphate-dependent enzyme. Graber R; Kasper P; Malashkevich VN; Sandmeier E; Berger P; Gehring H; Jansonius JN; Christen P Eur J Biochem; 1995 Sep; 232(2):686-90. PubMed ID: 7556224 [TBL] [Abstract][Full Text] [Related]
14. Use of site-directed mutagenesis and alternative substrates to assign the prototropic groups important to catalysis by Escherichia coli aspartate aminotransferase. Gloss LM; Kirsch JF Biochemistry; 1995 Mar; 34(12):3999-4007. PubMed ID: 7696265 [TBL] [Abstract][Full Text] [Related]
15. Shift in pH-rate profile and enhanced discrimination between dicarboxylic and aromatic substrates in mitochondrial aspartate aminotransferase Y70H. Pan P; Jaussi R; Gehring H; Giannattasio S; Christen P Biochemistry; 1994 Mar; 33(10):2757-60. PubMed ID: 8130187 [TBL] [Abstract][Full Text] [Related]
16. Mitochondrial aspartate aminotransferase 27/32-410. Partially active enzyme derivative produced by limited proteolytic cleavage of native enzyme. Sandmeier E; Christen P J Biol Chem; 1980 Nov; 255(21):10284-9. PubMed ID: 7430125 [TBL] [Abstract][Full Text] [Related]
17. Decreasing the basicity of the active site base, Lys-258, of Escherichia coli aspartate aminotransferase by replacement with gamma-thialysine. Gloss LM; Kirsch JF Biochemistry; 1995 Mar; 34(12):3990-8. PubMed ID: 7696264 [TBL] [Abstract][Full Text] [Related]
18. The use of natural and unnatural amino acid substrates to define the substrate specificity differences of Escherichia coli aspartate and tyrosine aminotransferases. Onuffer JJ; Ton BT; Klement I; Kirsch JF Protein Sci; 1995 Sep; 4(9):1743-9. PubMed ID: 8528072 [TBL] [Abstract][Full Text] [Related]
19. Redesign of the substrate specificity of Escherichia coli aspartate aminotransferase to that of Escherichia coli tyrosine aminotransferase by homology modeling and site-directed mutagenesis. Onuffer JJ; Kirsch JF Protein Sci; 1995 Sep; 4(9):1750-7. PubMed ID: 8528073 [TBL] [Abstract][Full Text] [Related]
20. The tyrosine-225 to phenylalanine mutation of Escherichia coli aspartate aminotransferase results in an alkaline transition in the spectrophotometric and kinetic pKa values and reduced values of both kcat and Km. Goldberg JM; Swanson RV; Goodman HS; Kirsch JF Biochemistry; 1991 Jan; 30(1):305-12. PubMed ID: 1988027 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]