These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 31670073)

  • 1. Harnessing behavioral diversity to understand neural computations for cognition.
    Musall S; Urai AE; Sussillo D; Churchland AK
    Curr Opin Neurobiol; 2019 Oct; 58():229-238. PubMed ID: 31670073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advances at the Interface of Neuroscience and Artificial Neural Networks.
    Cohen Y; Engel TA; Langdon C; Lindsay GW; Ott T; Peters MAK; Shine JM; Breton-Provencher V; Ramaswamy S
    J Neurosci; 2022 Nov; 42(45):8514-8523. PubMed ID: 36351830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-Scale, High-Resolution Comparison of the Core Visual Object Recognition Behavior of Humans, Monkeys, and State-of-the-Art Deep Artificial Neural Networks.
    Rajalingham R; Issa EB; Bashivan P; Kar K; Schmidt K; DiCarlo JJ
    J Neurosci; 2018 Aug; 38(33):7255-7269. PubMed ID: 30006365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How to incorporate biological insights into network models and why it matters.
    Bernáez Timón L; Ekelmans P; Kraynyukova N; Rose T; Busse L; Tchumatchenko T
    J Physiol; 2023 Aug; 601(15):3037-3053. PubMed ID: 36069408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep neural network models of sensory systems: windows onto the role of task constraints.
    Kell AJ; McDermott JH
    Curr Opin Neurobiol; 2019 Apr; 55():121-132. PubMed ID: 30884313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensory processing and categorization in cortical and deep neural networks.
    Pinotsis DA; Siegel M; Miller EK
    Neuroimage; 2019 Nov; 202():116118. PubMed ID: 31445126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. If deep learning is the answer, what is the question?
    Saxe A; Nelli S; Summerfield C
    Nat Rev Neurosci; 2021 Jan; 22(1):55-67. PubMed ID: 33199854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial Neural Networks for Neuroscientists: A Primer.
    Yang GR; Wang XJ
    Neuron; 2020 Sep; 107(6):1048-1070. PubMed ID: 32970997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Training Excitatory-Inhibitory Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework.
    Song HF; Yang GR; Wang XJ
    PLoS Comput Biol; 2016 Feb; 12(2):e1004792. PubMed ID: 26928718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autoencoder networks extract latent variables and encode these variables in their connectomes.
    Farrell M; Recanatesi S; Reid RC; Mihalas S; Shea-Brown E
    Neural Netw; 2021 Sep; 141():330-343. PubMed ID: 33957382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rethinking the performance comparison between SNNS and ANNS.
    Deng L; Wu Y; Hu X; Liang L; Ding Y; Li G; Zhao G; Li P; Xie Y
    Neural Netw; 2020 Jan; 121():294-307. PubMed ID: 31586857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-trial neural dynamics are dominated by richly varied movements.
    Musall S; Kaufman MT; Juavinett AL; Gluf S; Churchland AK
    Nat Neurosci; 2019 Oct; 22(10):1677-1686. PubMed ID: 31551604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mining naturalistic human behaviors in long-term video and neural recordings.
    Singh SH; Peterson SM; Rao RPN; Brunton BW
    J Neurosci Methods; 2021 Jul; 358():109199. PubMed ID: 33910024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting Cervical Spine Compression and Shear in Helicopter Helmeted Conditions Using Artificial Neural Networks.
    Moore CAB; Barrett JM; Healey L; Callaghan JP; Fischer SL
    IISE Trans Occup Ergon Hum Factors; 2021; 9(3-4):154-166. PubMed ID: 34092207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using artificial neural networks to ask 'why' questions of minds and brains.
    Kanwisher N; Khosla M; Dobs K
    Trends Neurosci; 2023 Mar; 46(3):240-254. PubMed ID: 36658072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural learning rules for generating flexible predictions and computing the successor representation.
    Fang C; Aronov D; Abbott LF; Mackevicius EL
    Elife; 2023 Mar; 12():. PubMed ID: 36928104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recurrent neural networks with explicit representation of dynamic latent variables can mimic behavioral patterns in a physical inference task.
    Rajalingham R; Piccato A; Jazayeri M
    Nat Commun; 2022 Oct; 13(1):5865. PubMed ID: 36195614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural dynamics of emotion and cognition: From trajectories to underlying neural geometry.
    Pessoa L
    Neural Netw; 2019 Dec; 120():158-166. PubMed ID: 31522827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The emergence and influence of internal states.
    Flavell SW; Gogolla N; Lovett-Barron M; Zelikowsky M
    Neuron; 2022 Aug; 110(16):2545-2570. PubMed ID: 35643077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research.
    Agatonovic-Kustrin S; Beresford R
    J Pharm Biomed Anal; 2000 Jun; 22(5):717-27. PubMed ID: 10815714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.