These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 3167008)
1. Vesicle-to-cell protein transfer: insertion of band 3, the erythrocyte anion transporter, into lymphoid cells. Newton AC; Huestis WH Biochemistry; 1988 Jun; 27(13):4655-9. PubMed ID: 3167008 [TBL] [Abstract][Full Text] [Related]
2. Intermembrane protein transfer. Band 3, the erythrocyte anion transporter, transfers in native orientation from human red blood cells into the bilayer of phospholipid vesicles. Huestis WH; Newton AC J Biol Chem; 1986 Dec; 261(34):16274-8. PubMed ID: 3782118 [TBL] [Abstract][Full Text] [Related]
3. Transfer of band 3, the erythrocyte anion transporter, between phospholipid vesicles and cells. Newton AC; Cook SL; Huestis WH Biochemistry; 1983 Dec; 22(26):6110-7. PubMed ID: 6661430 [TBL] [Abstract][Full Text] [Related]
4. Physical determinants of intermembrane protein transfer. Waters SI; Sen R; Brunauer LS; Huestis WH Biochemistry; 1996 Apr; 35(13):4002-8. PubMed ID: 8672433 [TBL] [Abstract][Full Text] [Related]
5. Efflux of dipicolinic acid from human erythrocytes, sealed membrane fragments, and band 3-liposome complexes: a fluorescence probe for the erythrocyte anion transporter. Newton AC; Huestis WH Anal Biochem; 1986 Jul; 156(1):56-60. PubMed ID: 3740418 [TBL] [Abstract][Full Text] [Related]
6. Lymphoma-vesicle interactions: vesicle adsorption, membrane fragmentation, and intermembrane protein transfer. Newton AC; Huestis WH Biochemistry; 1988 Jun; 27(13):4645-55. PubMed ID: 3167007 [TBL] [Abstract][Full Text] [Related]
7. Evidence from deuterium nuclear magnetic resonance for the temperature-dependent reversible self-association of erythrocyte band 3 in dimyristoylphosphatidylcholine bilayers. Dempsey CE; Ryba NJ; Watts A Biochemistry; 1986 Apr; 25(8):2180-7. PubMed ID: 3707939 [TBL] [Abstract][Full Text] [Related]
8. The anion permeability of vesicles reconstituted with intrinsic proteins from the human erythrocyte membrane. Van Hoogevest P; Van Duijn G; Batenburg AM; De Kruijff B; De Gier J Biochim Biophys Acta; 1983 Sep; 734(1):1-17. PubMed ID: 6615825 [TBL] [Abstract][Full Text] [Related]
9. Phospholipid dependence of the anion transport system of the human erythrocyte membrane. Studies on reconstituted band 3/lipid vesicles. Köhne W; Deuticke B; Haest CW Biochim Biophys Acta; 1983 Apr; 730(1):139-50. PubMed ID: 6830794 [TBL] [Abstract][Full Text] [Related]
10. Enzymatic methylation of band 3 anion transporter in intact human erythrocytes. Lou LL; Clarke S Biochemistry; 1987 Jan; 26(1):52-9. PubMed ID: 3828308 [TBL] [Abstract][Full Text] [Related]
11. New approaches for the reconstitution and functional assay of membrane transport proteins. Application to the anion transporter of human erythrocytes. Darmon A; Zangvill M; Cabantchik ZI Biochim Biophys Acta; 1983 Jan; 727(1):77-88. PubMed ID: 6824657 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of L-lactate transport and band 3-mediated anion transport in erythrocytes by the novel stilbenedisulphonate N,N,N',N'-tetrabenzyl-4,4'-diaminostilbene-2,2'-disulpho nat e (TBenzDS). Poole RC; Cranmer SL; Holdup DW; Halestrap AP Biochim Biophys Acta; 1991 Nov; 1070(1):69-76. PubMed ID: 1751540 [TBL] [Abstract][Full Text] [Related]
13. The amino acid conjugate formed by the interaction of the anion transport inhibitor 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) with band 3 protein from human red blood cell membranes. Ramjeesingh M; Gaarn A; Rothstein A Biochim Biophys Acta; 1981 Feb; 641(1):173-82. PubMed ID: 6783088 [TBL] [Abstract][Full Text] [Related]
14. Comparison of murine band 3 protein-mediated Cl- transport as measured in mouse red blood cells and in oocytes of Xenopus laevis. Hanke-Baier P; Raida M; Passow H Biochim Biophys Acta; 1988 May; 940(1):136-40. PubMed ID: 3365428 [TBL] [Abstract][Full Text] [Related]
15. Reconstitution of glucose transport using human erythrocyte band 3. Shelton RL; Langdon RG Biochim Biophys Acta; 1983 Aug; 733(1):25-33. PubMed ID: 6683973 [TBL] [Abstract][Full Text] [Related]
16. Posttranslational modifications of brain and erythrocyte band 3 during aging and disease. Kay MM; Rapcsak SZ; Bosman GJ; Goodman JR Cell Mol Biol (Noisy-le-grand); 1996 Nov; 42(7):919-44. PubMed ID: 8960771 [TBL] [Abstract][Full Text] [Related]
17. Chloride--bicarbonate exchange in red blood cells: physiology of transport and chemical modification of binding sites. Wieth JO; Andersen OS; Brahm J; Bjerrum PJ; Borders CL Philos Trans R Soc Lond B Biol Sci; 1982 Dec; 299(1097):383-99. PubMed ID: 6130537 [TBL] [Abstract][Full Text] [Related]
18. Rotational mobility of an erythrocyte membrane integral protein band 3 in dimyristoylphosphatidylcholine reconstituted vesicles and effect of binding of cytoskeletal peripheral proteins. Sakaki T; Tsuji A; Chang CH; Ohnishi S Biochemistry; 1982 May; 21(10):2366-72. PubMed ID: 6284198 [TBL] [Abstract][Full Text] [Related]
19. Kinetic independence between red cell anion exchange and urea transport. Fröhlich O; Jones SC Biochim Biophys Acta; 1988 Sep; 943(3):531-4. PubMed ID: 3415994 [TBL] [Abstract][Full Text] [Related]
20. Source of transport site asymmetry in the band 3 anion exchange protein determined by NMR measurements of external Cl- affinity. Liu D; Kennedy SD; Knauf PA Biochemistry; 1996 Dec; 35(48):15228-35. PubMed ID: 8952471 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]