These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31670087)

  • 1. Quantification of bacteria in water using PLS analysis of emission spectra of fluorescence and excitation-emission matrices.
    Nakar A; Schmilovitch Z; Vaizel-Ohayon D; Kroupitski Y; Borisover M; Sela Saldinger S
    Water Res; 2020 Feb; 169():115197. PubMed ID: 31670087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Online fluorescence spectroscopy for the real-time evaluation of the microbial quality of drinking water.
    Sorensen JPR; Vivanco A; Ascott MJ; Gooddy DC; Lapworth DJ; Read DS; Rushworth CM; Bucknall J; Herbert K; Karapanos I; Gumm LP; Taylor RG
    Water Res; 2018 Jun; 137():301-309. PubMed ID: 29554534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel fluorescence spectroscopy method coupled with N-PLS-R and PLS-DA models for the quantification of cannabinoids and the classification of cannabis cultivars.
    Birenboim M; Kenigsbuch D; Shimshoni JA
    Phytochem Anal; 2023 Apr; 34(3):280-288. PubMed ID: 36597766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tryptophan-like fluorescence as a high-level screening tool for detecting microbial contamination in drinking water.
    Ward JST; Lapworth DJ; Read DS; Pedley S; Banda ST; Monjerezi M; Gwengweya G; MacDonald AM
    Sci Total Environ; 2021 Jan; 750():141284. PubMed ID: 33182170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of protein and oil contents in soybeans using fluorescence excitation emission matrix.
    Saito Y; Itakura K; Kuramoto M; Kaho T; Ohtake N; Hasegawa H; Suzuki T; Kondo N
    Food Chem; 2021 Dec; 365():130403. PubMed ID: 34218102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence-based multi-parameter approach to characterize dynamics of organic carbon, faecal bacteria and particles at alpine karst springs.
    Frank S; Goeppert N; Goldscheider N
    Sci Total Environ; 2018 Feb; 615():1446-1459. PubMed ID: 28935241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time detection of faecally contaminated drinking water with tryptophan-like fluorescence: defining threshold values.
    Sorensen JPR; Baker A; Cumberland SA; Lapworth DJ; MacDonald AM; Pedley S; Taylor RG; Ward JST
    Sci Total Environ; 2018 May; 622-623():1250-1257. PubMed ID: 29890592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PARAFAC modeling of fluorescence excitation-emission spectra for rapid assessment of compost maturity.
    Yu GH; Luo YH; Wu MJ; Tang Z; Liu DY; Yang XM; Shen QR
    Bioresour Technol; 2010 Nov; 101(21):8244-51. PubMed ID: 20598876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A continuous, in-situ, near-time fluorescence sensor coupled with a machine learning model for detection of fecal contamination risk in drinking water: Design, characterization and field validation.
    Bedell E; Harmon O; Fankhauser K; Shivers Z; Thomas E
    Water Res; 2022 Jul; 220():118644. PubMed ID: 35667167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrimination of geographical origin and detection of adulteration of kudzu root by fluorescence spectroscopy coupled with multi-way pattern recognition.
    Hu L; Ma S; Yin C
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Mar; 193():87-94. PubMed ID: 29223058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence spectroscopy for rapid detection and classification of bacterial pathogens.
    Sohn M; Himmelsbach DS; Barton FE; Fedorka-Cray PJ
    Appl Spectrosc; 2009 Nov; 63(11):1251-5. PubMed ID: 19891833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photochemical degradation of oil products in seawater monitored by 3D excitation emission matrix (EEM) fluorescence spectroscopy: implications for coloured dissolved organic matter (CDOM) studies.
    de Bruyn W; Chang D; Bui T; Hok S; Clark C
    Environ Sci Pollut Res Int; 2018 Dec; 25(34):34777-34787. PubMed ID: 30324377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of pesticide in water using two-dimensional fluorescence correlation spectroscopy and N-way partial least squares.
    Guo Z; Liu C; Yang R; Dong G; Yang Y; Liu H; Wu N
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 229():117981. PubMed ID: 31923783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tryptophan-like fluorescence as a measure of microbial contamination risk in groundwater.
    Nowicki S; Lapworth DJ; Ward JST; Thomson P; Charles K
    Sci Total Environ; 2019 Jan; 646():782-791. PubMed ID: 30064104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In-situ fluorescence spectroscopy is a more rapid and resilient indicator of faecal contamination risk in drinking water than faecal indicator organisms.
    Sorensen JPR; Nayebare J; Carr AF; Lyness R; Campos LC; Ciric L; Goodall T; Kulabako R; Curran CMR; MacDonald AM; Owor M; Read DS; Taylor RG
    Water Res; 2021 Nov; 206():117734. PubMed ID: 34655933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter.
    Chen W; Westerhoff P; Leenheer JA; Booksh K
    Environ Sci Technol; 2003 Dec; 37(24):5701-10. PubMed ID: 14717183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of imidacloprid in water samples via photochemically induced fluorescence and second-order multivariate calibration.
    Fuentes E; Cid C; Báez ME
    Talanta; 2015 Mar; 134():8-15. PubMed ID: 25618634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of total phenolic content in virgin olive oil using fluorescence excitation-emission spectroscopy coupled with chemometrics.
    Squeo G; Caponio F; Paradiso VM; Summo C; Pasqualone A; Khmelinskii I; Sikorska E
    J Sci Food Agric; 2019 Mar; 99(5):2513-2520. PubMed ID: 30379336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining parallel factor analysis and machine learning for the classification of dissolved organic matter according to source using fluorescence signatures.
    Cuss CW; McConnell SM; Guéguen C
    Chemosphere; 2016 Jul; 155():283-291. PubMed ID: 27131448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Second-order advantage achieved with four-way fluorescence excitation-emission-kinetic data processed by parallel factor analysis and trilinear least-squares. Determination of methotrexate and leucovorin in human urine.
    Olivieri AC; Arancibia JA; Muñoz de la Peña A; Durán-Merás I; Espinosa Mansilla A
    Anal Chem; 2004 Oct; 76(19):5657-66. PubMed ID: 15456283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.