These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 31670160)

  • 21. The Need for Consistency with Physical Laws and Logic in Choosing Between Competing Molecular Mechanisms in Biological Processes: A Case Study in Modeling ATP Synthesis.
    Nath S
    Function (Oxf); 2022; 3(6):zqac054. PubMed ID: 36340246
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Novel Conceptual Model for the Dual Role of FOF1-ATP Synthase in Cell Life and Cell Death.
    Nath S
    Biomol Concepts; 2020 Aug; 11(1):143-152. PubMed ID: 32827389
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Corrigendum to "Modern theory of energy coupling and ATP synthesis: Violation of Gauss's law by the chemiosmotic theory and validation of the two-ion theory" [Biophysical Chemistry 2019, 255:106271].
    Nath S
    Biophys Chem; 2022 Aug; 287():106826. PubMed ID: 35598588
    [No Abstract]   [Full Text] [Related]  

  • 24. Beyond the chemiosmotic theory: analysis of key fundamental aspects of energy coupling in oxidative phosphorylation in the light of a torsional mechanism of energy transduction and ATP synthesis--invited review part 2.
    Nath S
    J Bioenerg Biomembr; 2010 Aug; 42(4):301-9. PubMed ID: 20490638
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermodynamic analysis of energy coupling by determination of the Onsager phenomenological coefficients for a 3×3 system of coupled chemical reactions and transport in ATP synthesis and its mechanistic implications.
    Nath S
    Biosystems; 2024 Jun; 240():105228. PubMed ID: 38735525
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Integration of demand and supply sides in the ATP energy economics of cells.
    Nath S
    Biophys Chem; 2019 Sep; 252():106208. PubMed ID: 31238246
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An assessment of the chemiosmotic hypothesis of mitochondrial energy transduction.
    Wainio WW
    Int Rev Cytol; 1985; 96():29-50. PubMed ID: 2867062
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Is the mitochondrial ATP synthesis solely H
    Lemeshko VV
    Biochim Biophys Acta Biomembr; 2024 Jan; 1866(1):184229. PubMed ID: 37704041
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Beyond binding change: the molecular mechanism of ATP hydrolysis by F
    Nath S
    Front Chem; 2023; 11():1058500. PubMed ID: 37324562
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interpretation of the mechanism of action of antituberculosis drug bedaquiline based on a novel two-ion theory of energy coupling in ATP synthesis.
    Nath S
    Bioeng Transl Med; 2019 Jan; 4(1):164-170. PubMed ID: 30680327
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An update of the chemiosmotic theory as suggested by possible proton currents inside the coupling membrane.
    Morelli AM; Ravera S; Calzia D; Panfoli I
    Open Biol; 2019 Apr; 9(4):180221. PubMed ID: 30966998
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Voltage coupling of primary H+ V-ATPases to secondary Na+- or K+-dependent transporters.
    Harvey WR
    J Exp Biol; 2009 Jun; 212(Pt 11):1620-9. PubMed ID: 19448072
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Theoretical study of an energy metabolizing system satisfying Mitchell's postulates.
    Rohde K; Reich JG
    Acta Biol Med Ger; 1980; 39(4):367-80. PubMed ID: 7445887
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acidic lipids, H(+)-ATPases, and mechanism of oxidative phosphorylation. Physico-chemical ideas 30 years after P. Mitchell's Nobel Prize award.
    Kocherginsky N
    Prog Biophys Mol Biol; 2009 Jan; 99(1):20-41. PubMed ID: 19049812
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Warburg Effect Reinterpreted 100 yr on: A First-Principles Stoichiometric Analysis and Interpretation from the Perspective of ATP Metabolism in Cancer Cells.
    Nath S; Balling R
    Function (Oxf); 2024; 5(3):zqae008. PubMed ID: 38706962
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Energy Equivalence of Information in the Mitochondrion and the Thermodynamic Efficiency of ATP Synthase.
    Matta CF; Massa L
    Biochemistry; 2015 Sep; 54(34):5376-8. PubMed ID: 26243158
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Comparative Study of the Action of Protonophore Uncouplers and Decoupling Agents as Inducers of Free Respiration in Mitochondria in States 3 and 4: Theoretical and Experimental Approaches.
    Samartsev VN; Semenova AA; Dubinin MV
    Cell Biochem Biophys; 2020 Jun; 78(2):203-216. PubMed ID: 32367259
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. 1966.
    Mitchell P
    Biochim Biophys Acta; 2011 Dec; 1807(12):1507-38. PubMed ID: 22082452
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chemiosmotic energy conversion of the archaebacterial thermoacidophile Sulfolobus acidocaldarius: oxidative phosphorylation and the presence of an F0-related N,N'-dicyclohexylcarbodiimide-binding proteolipid.
    Lübben M; Schäfer G
    J Bacteriol; 1989 Nov; 171(11):6106-16. PubMed ID: 2478523
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A mechano-chemiosmotic model for the coupling of electron and proton transfer to ATP synthesis in energy-transforming membranes: a personal perspective.
    Kasumov EA; Kasumov RE; Kasumova IV
    Photosynth Res; 2015 Jan; 123(1):1-22. PubMed ID: 25266924
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.