These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 31670183)

  • 1. Modulatory influences on time-coding neurons in the ventral cochlear nucleus.
    Kuenzel T
    Hear Res; 2019 Dec; 384():107824. PubMed ID: 31670183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small dendritic synapses enhance temporal coding in a model of cochlear nucleus bushy cells.
    Koert E; Kuenzel T
    J Neurophysiol; 2021 Mar; 125(3):915-937. PubMed ID: 33471627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The commissural pathway and cochlear nucleus bushy neurons: an in vivo intracellular investigation.
    Needham K; Paolini AG
    Brain Res; 2007 Feb; 1134(1):113-21. PubMed ID: 17174943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multisensory Integration Enhances Temporal Coding in Ventral Cochlear Nucleus Bushy Cells.
    Heeringa AN; Wu C; Shore SE
    J Neurosci; 2018 Mar; 38(11):2832-2843. PubMed ID: 29440557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of GluA3 AMPA Receptor Subunits in the Presynaptic and Postsynaptic Maturation of Synaptic Transmission and Plasticity of Endbulb-Bushy Cell Synapses in the Cochlear Nucleus.
    Antunes FM; Rubio ME; Kandler K
    J Neurosci; 2020 Mar; 40(12):2471-2484. PubMed ID: 32051325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition shapes acoustic responsiveness in spherical bushy cells.
    Keine C; Rübsamen R
    J Neurosci; 2015 Jun; 35(22):8579-92. PubMed ID: 26041924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of excitation and inhibition in anteroventral cochlear nucleus neurons that receive large endbulb synaptic endings.
    Kopp-Scheinpflug C; Dehmel S; Dörrscheidt GJ; Rübsamen R
    J Neurosci; 2002 Dec; 22(24):11004-18. PubMed ID: 12486196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linear coding of complex sound spectra by discharge rate in neurons of the medial nucleus of the trapezoid body (MNTB) and its inputs.
    Koka K; Tollin DJ
    Front Neural Circuits; 2014; 8():144. PubMed ID: 25565971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibitory properties underlying non-monotonic input-output relationship in low-frequency spherical bushy neurons of the gerbil.
    Kuenzel T; Nerlich J; Wagner H; Rübsamen R; Milenkovic I
    Front Neural Circuits; 2015; 9():14. PubMed ID: 25873864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiate and Planar Multipolar Neurons of the Mouse Anteroventral Cochlear Nucleus: Intrinsic Excitability and Characterization of their Auditory Nerve Input.
    Xie R; Manis PB
    Front Neural Circuits; 2017; 11():77. PubMed ID: 29093666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmission of phase-coupling accuracy from the auditory nerve to spherical bushy cells in the Mongolian gerbil.
    Dehmel S; Kopp-Scheinpflug C; Weick M; Dörrscheidt GJ; Rübsamen R
    Hear Res; 2010 Sep; 268(1-2):234-49. PubMed ID: 20561574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perfidious synaptic transmission in the guinea-pig auditory brainstem.
    Stasiak A; Sayles M; Winter IM
    PLoS One; 2018; 13(10):e0203712. PubMed ID: 30286113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ion channels and synapses responsible for the physiological diversity of mammalian lower brainstem auditory neurons.
    Leão RM
    Hear Res; 2019 May; 376():33-46. PubMed ID: 30606624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parallel auditory pathways: projection patterns of the different neuronal populations in the dorsal and ventral cochlear nuclei.
    Cant NB; Benson CG
    Brain Res Bull; 2003 Jun; 60(5-6):457-74. PubMed ID: 12787867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphological characterization of bushy cells and their inputs in the laboratory mouse (Mus musculus) anteroventral cochlear nucleus.
    Lauer AM; Connelly CJ; Graham H; Ryugo DK
    PLoS One; 2013; 8(8):e73308. PubMed ID: 23991186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution volumetric imaging constrains compartmental models to explore synaptic integration and temporal processing by cochlear nucleus globular bushy cells.
    Spirou GA; Kersting M; Carr S; Razzaq B; Yamamoto Alves Pinto C; Dawson M; Ellisman MH; Manis PB
    Elife; 2023 Jun; 12():. PubMed ID: 37288824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activity-dependent synaptic integration and modulation of bilateral excitatory inputs in an auditory coincidence detection circuit.
    Lu Y; Liu Y; Curry RJ
    J Physiol; 2018 May; 596(10):1981-1997. PubMed ID: 29572827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuronal population model of globular bushy cells covering unit-to-unit variability.
    Ashida G; Heinermann HT; Kretzberg J
    PLoS Comput Biol; 2019 Dec; 15(12):e1007563. PubMed ID: 31881018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Auditory nerve fibers excite targets through synapses that vary in convergence, strength, and short-term plasticity.
    Cao XJ; Oertel D
    J Neurophysiol; 2010 Nov; 104(5):2308-20. PubMed ID: 20739600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transmission of auditory sensory information decreases in rate and temporal precision at the endbulb of Held synapse during age-related hearing loss.
    Xie R
    J Neurophysiol; 2016 Dec; 116(6):2695-2705. PubMed ID: 27683884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.