BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31670191)

  • 1. Development of a method to evaluate the tenderness of fresh tea leaves based on rapid, in-situ Raman spectroscopy scanning for carotenoids.
    Zhang Y; Gao W; Cui C; Zhang Z; He L; Zheng J; Hou R
    Food Chem; 2020 Mar; 308():125648. PubMed ID: 31670191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of chlorophylls and carotenoids in major teas by high-performance liquid chromatography with photodiode array detection.
    Suzuki Y; Shioi Y
    J Agric Food Chem; 2003 Aug; 51(18):5307-14. PubMed ID: 12926875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman spectroscopy application in frozen carrot cooked in different ways and the relationship with carotenoids.
    Camorani P; Chiavaro E; Cristofolini L; Paciulli M; Zaupa M; Visconti A; Fogliano V; Pellegrini N
    J Sci Food Agric; 2015 Aug; 95(11):2185-91. PubMed ID: 25410476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Research Review on Quality Detection of Fresh Tea Leaves Based on Spectral Technology.
    Tang T; Luo Q; Yang L; Gao C; Ling C; Wu W
    Foods; 2023 Dec; 13(1):. PubMed ID: 38201054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raman, AFM and SNOM high resolution imaging of carotene crystals in a model carrot cell system.
    Rygula A; Oleszkiewicz T; Grzebelus E; Pacia MZ; Baranska M; Baranski R
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 May; 197():47-55. PubMed ID: 29402560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential of NIR-FT-Raman spectroscopy in natural carotenoid analysis.
    Schulz H; Baranska M; Baranski R
    Biopolymers; 2005 Mar; 77(4):212-21. PubMed ID: 15674976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-invasive raman spectroscopic detection of carotenoids in human skin.
    Hata TR; Scholz TA; Ermakov IV; McClane RW; Khachik F; Gellermann W; Pershing LK
    J Invest Dermatol; 2000 Sep; 115(3):441-8. PubMed ID: 10951281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid prediction of chlorophylls and carotenoids content in tea leaves under different levels of nitrogen application based on hyperspectral imaging.
    Wang Y; Hu X; Jin G; Hou Z; Ning J; Zhang Z
    J Sci Food Agric; 2019 Mar; 99(4):1997-2004. PubMed ID: 30298617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discrimination of white teas produced from fresh leaves with different maturity by near-infrared spectroscopy.
    Li C; Zong B; Guo H; Luo Z; He P; Gong S; Fan F
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 227():117697. PubMed ID: 31699592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation model for Raman based skin carotenoid detection.
    Ermakov IV; Gellermann W
    Arch Biochem Biophys; 2010 Dec; 504(1):40-9. PubMed ID: 20678465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The Study of the Spectral Model for Estimating Pigment Contents of Tobacco Leaves in Field].
    Ren X; Lao CL; Xu ZL; Jin Y; Guo Y; Li JH; Yang YH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jun; 35(6):1654-9. PubMed ID: 26601385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid detection of quality index of postharvest fresh tea leaves using hyperspectral imaging.
    Wang YJ; Li LQ; Shen SS; Liu Y; Ning JM; Zhang ZZ
    J Sci Food Agric; 2020 Aug; 100(10):3803-3811. PubMed ID: 32201954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ flavonoid analysis by FT-Raman spectroscopy: identification, distribution, and quantification of aspalathin in green rooibos (Aspalathus linearis).
    Baranska M; Schulz H; Joubert E; Manley M
    Anal Chem; 2006 Nov; 78(22):7716-21. PubMed ID: 17105163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Experiment of Online Detection System for Water Content of Fresh Tea Leaves after Harvesting Based on Near Infra-Red Spectroscopy.
    Wang S; Wu Z; Cao C; An M; Luo K; Sun L; Wang X
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential of spectroscopic analyses for non-destructive estimation of tea quality-related metabolites in fresh new leaves.
    Yamashita H; Sonobe R; Hirono Y; Morita A; Ikka T
    Sci Rep; 2021 Feb; 11(1):4169. PubMed ID: 33603126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Citrus fruits freshness assessment using Raman spectroscopy.
    Nekvapil F; Brezestean I; Barchewitz D; Glamuzina B; Chiş V; Cintă Pinzaru S
    Food Chem; 2018 Mar; 242():560-567. PubMed ID: 29037730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo distribution of carotenoids in different anatomical locations of human skin: comparative assessment with two different Raman spectroscopy methods.
    Darvin ME; Fluhr JW; Caspers P; van der Pool A; Richter H; Patzelt A; Sterry W; Lademann J
    Exp Dermatol; 2009 Dec; 18(12):1060-3. PubMed ID: 19650865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman spectroscopy for intracellular monitoring of carotenoid in Blakeslea trispora.
    Papaioannou EH; Liakopoulou-Kyriakides M; Christofilos D; Arvanitidis I; Kourouklis G
    Appl Biochem Biotechnol; 2009 Nov; 159(2):478-87. PubMed ID: 19130307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative visualization of photosynthetic pigments in tea leaves based on Raman spectroscopy and calibration model transfer.
    Zeng J; Ping W; Sanaeifar A; Xu X; Luo W; Sha J; Huang Z; Huang Y; Liu X; Zhan B; Zhang H; Li X
    Plant Methods; 2021 Jan; 17(1):4. PubMed ID: 33407678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analyzing carotenoids of snow algae by Raman microspectroscopy and high-performance liquid chromatography.
    Osterrothová K; Culka A; Němečková K; Kaftan D; Nedbalová L; Procházková L; Jehlička J
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Apr; 212():262-271. PubMed ID: 30658280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.