These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 31670400)
1. Strong complexation of water-soluble betulin derivatives with (2-hydroxypropyl)-γ-cyclodextrin studied by affinity capillary electrophoresis. Sursyakova VV; Levdansky VA; Rubaylo AI Electrophoresis; 2020 Jan; 41(1-2):112-115. PubMed ID: 31670400 [TBL] [Abstract][Full Text] [Related]
2. Determination of binding constants for strong complexation by affinity capillary electrophoresis: the example of complexes of ester betulin derivatives with (2-hydroxypropyl)-γ-cyclodextrin. Sursyakova VV; Levdansky VA; Rubaylo AI Anal Bioanal Chem; 2020 Sep; 412(23):5615-5625. PubMed ID: 32617760 [TBL] [Abstract][Full Text] [Related]
3. Determining binding constants for 1:1 and 1:2 inclusion complexes of ester betulin derivatives with (2-hydroxypropyl)-β-cyclodextrin by affinity capillary electrophoresis. Sursyakova VV; Levdansky VA; Rubaylo AI Electrophoresis; 2021 Mar; 42(6):700-707. PubMed ID: 33253428 [TBL] [Abstract][Full Text] [Related]
4. Electrophoretic mobility of ester betulin derivatives and their complexation with γ-cyclodextrin studied by capillary electrophoresis in aqueous solutions at different pH values. Sursyakova VV; Levdansky VA; Rubaylo AI Electrophoresis; 2022 Feb; 43(4):535-542. PubMed ID: 34761422 [TBL] [Abstract][Full Text] [Related]
5. Thermodynamic parameters for the complexation of water-insoluble betulin derivatives with (2-hydroxypropyl)-γ-cyclodextrin determined by phase-solubility technique combined with capillary zone electrophoresis. Sursyakova VV; Levdansky VA; Rubaylo AI Electrophoresis; 2019 Jul; 40(12-13):1656-1661. PubMed ID: 30957904 [TBL] [Abstract][Full Text] [Related]
6. Combination of phase-solubility method and capillary zone electrophoresis to determine binding constants of cyclodextrins with practically water-insoluble compounds. Sursyakova VV; Maksimov NG; Levdansky VA; Rubaylo AI J Pharm Biomed Anal; 2018 Oct; 160():12-18. PubMed ID: 30055342 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of the effect of background electrolyte composition and independence of parameters in determining binding constants of betulin derivatives to β- and dimethyl-β-cyclodextrins by affinity capillary electrophoresis. Sursyakova VV; Levdansky VA; Rubaylo AI J Sep Sci; 2022 Oct; 45(19):3745-3753. PubMed ID: 35917389 [TBL] [Abstract][Full Text] [Related]
8. Boundary values of binding constants determined by affinity capillary electrophoresis. Sursyakova VV; Rubaylo AI J Sep Sci; 2021 Nov; 44(22):4200-4203. PubMed ID: 34510741 [TBL] [Abstract][Full Text] [Related]
9. Peak shape modeling by Haarhoff-Van der Linde function for the determination of correct migration times: a new insight into affinity capillary electrophoresis. Le Saux T; Varenne A; Gareil P Electrophoresis; 2005 Aug; 26(16):3094-104. PubMed ID: 16041707 [TBL] [Abstract][Full Text] [Related]
10. Electromigration dispersion in capillary zone electrophoresis. Experimental validation of use of the Haarhoff-Van der Linde function. Erny GL; Bergström ET; Goodall DM J Chromatogr A; 2002 Jun; 959(1-2):229-39. PubMed ID: 12141548 [TBL] [Abstract][Full Text] [Related]
11. Determination of binding constants of multiple charged cyclodextrin complexes by ACE using uncorrected and ionic strength corrected actual mobilities of the species involved. Sázelová P; Koval D; Severa L; Teplý F; Vigh G; Kašička V Electrophoresis; 2020 Apr; 41(7-8):523-535. PubMed ID: 31763706 [TBL] [Abstract][Full Text] [Related]
12. Characterization of complexes between phenethylamine enantiomers and β-cyclodextrin derivatives by capillary electrophoresis-Determination of binding constants and complex mobilities. Wahl J; Furuishi T; Yonemochi E; Meinel L; Holzgrabe U Electrophoresis; 2017 Apr; 38(8):1188-1200. PubMed ID: 28130905 [TBL] [Abstract][Full Text] [Related]
14. CEval: All-in-one software for data processing and statistical evaluations in affinity capillary electrophoresis. Dubský P; Ördögová M; Malý M; Riesová M J Chromatogr A; 2016 May; 1445():158-65. PubMed ID: 27062723 [TBL] [Abstract][Full Text] [Related]
15. Predicting peak shape in capillary zone electrophoresis: a generic approach to parametrizing peaks using the Haarhoff-Van der Linde (HVL) function. Erny GL; Bergström ET; Goodall DM; Grieb S Anal Chem; 2001 Oct; 73(20):4862-72. PubMed ID: 11681462 [TBL] [Abstract][Full Text] [Related]
16. Betulin complex in γ-cyclodextrin derivatives: properties and antineoplasic activities in in vitro and in vivo tumor models. Soica C; Dehelean C; Danciu C; Wang HM; Wenz G; Ambrus R; Bojin F; Anghel M Int J Mol Sci; 2012 Nov; 13(11):14992-5011. PubMed ID: 23203108 [TBL] [Abstract][Full Text] [Related]
17. A comparison investigation on the solubilization of betulin and betulinic acid in cyclodextrin derivatives. Wang HM; Soica CM; Wenz G Nat Prod Commun; 2012 Mar; 7(3):289-91. PubMed ID: 22545397 [TBL] [Abstract][Full Text] [Related]
18. Complexation of triptolide and its succinate derivative with cyclodextrins: affinity capillary electrophoresis, isothermal titration calorimetry and 1H NMR studies. Danel C; Duval C; Azaroual N; Vaccher C; Bonte JP; Bailly C; Landy D; Goossens JF J Chromatogr A; 2011 Dec; 1218(48):8708-14. PubMed ID: 22033106 [TBL] [Abstract][Full Text] [Related]
19. Applicability and limitations of affinity capillary electrophoresis and vacancy affinity capillary electrophoresis methods for determination of complexation constants. Dvořák M; Svobodová J; Beneš M; Gaš B Electrophoresis; 2013 Mar; 34(5):761-7. PubMed ID: 23254978 [TBL] [Abstract][Full Text] [Related]
20. Enantioseparation of phenothiazines in cyclodextrin-modified capillary zone electrophoresis: reversal of migration order. Lin CE; Liao WS; Chen KH Electrophoresis; 2003 Sep; 24(18):3139-46. PubMed ID: 14518036 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]