These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 3167045)
1. Cholinergic synaptic vesicle heterogeneity: evidence for regulation of acetylcholine transport. Gracz LM; Wang WC; Parsons SM Biochemistry; 1988 Jul; 27(14):5268-74. PubMed ID: 3167045 [TBL] [Abstract][Full Text] [Related]
2. Sidedness and chemical and kinetic properties of the vesamicol receptor of cholinergic synaptic vesicles. Kornreich WD; Parsons SM Biochemistry; 1988 Jul; 27(14):5262-7. PubMed ID: 2844255 [TBL] [Abstract][Full Text] [Related]
3. A kinetic and allosteric model for the acetylcholine transporter-vesamicol receptor in synaptic vesicles. Bahr BA; Clarkson ED; Rogers GA; Noremberg K; Parsons SM Biochemistry; 1992 Jun; 31(25):5752-62. PubMed ID: 1319200 [TBL] [Abstract][Full Text] [Related]
4. Fractional vesamicol receptor occupancy and acetylcholine active transport inhibition in synaptic vesicles. Kaufman R; Rogers GA; Fehlmann C; Parsons SM Mol Pharmacol; 1989 Sep; 36(3):452-8. PubMed ID: 2550778 [TBL] [Abstract][Full Text] [Related]
5. Demonstration of a receptor in Torpedo synaptic vesicles for the acetylcholine storage blocker L-trans-2-(4-phenyl[3,4-3H]-piperidino) cyclohexanol. Bahr BA; Parsons SM Proc Natl Acad Sci U S A; 1986 Apr; 83(7):2267-70. PubMed ID: 3457385 [TBL] [Abstract][Full Text] [Related]
6. Regulation of the vesamicol receptor in cholinergic synaptic vesicles by acetylcholine and an endogenous factor. Noremberg K; Parsons SM J Neurochem; 1989 Mar; 52(3):913-20. PubMed ID: 2537382 [TBL] [Abstract][Full Text] [Related]
7. Stoichiometries of acetylcholine uptake, release, and drug inhibition in Torpedo synaptic vesicles: heterogeneity in acetylcholine transport and storage. Anderson DC; Bahr BA; Parsons SM J Neurochem; 1986 Apr; 46(4):1207-13. PubMed ID: 3950624 [TBL] [Abstract][Full Text] [Related]
8. Pharmacological characterization of the acetylcholine transport system in purified Torpedo electric organ synaptic vesicles. Anderson DC; King SC; Parsons SM Mol Pharmacol; 1983 Jul; 24(1):48-54. PubMed ID: 6865925 [TBL] [Abstract][Full Text] [Related]
9. Acetylcholine transport and drug inhibition kinetics in Torpedo synaptic vesicles. Bahr BA; Parsons SM J Neurochem; 1986 Apr; 46(4):1214-8. PubMed ID: 3950625 [TBL] [Abstract][Full Text] [Related]
10. Photoaffinity labeling of the vesamicol receptor of cholinergic synaptic vesicles. Rogers GA; Parsons SM Biochemistry; 1993 Aug; 32(33):8596-601. PubMed ID: 8357803 [TBL] [Abstract][Full Text] [Related]
11. Purification of active synaptic vesicles from the electric organ of Torpedo californica and comparison to reserve vesicles. Gracz LM; Parsons SM Biochim Biophys Acta; 1996 Feb; 1292(2):293-302. PubMed ID: 8597576 [TBL] [Abstract][Full Text] [Related]
12. AH5183 and cetiedil: two potent inhibitors of acetylcholine uptake into isolated synaptic vesicles from Torpedo marmorata. Diebler MF; Gaudry-Talarmain YM J Neurochem; 1989 Mar; 52(3):813-21. PubMed ID: 2521893 [TBL] [Abstract][Full Text] [Related]
13. Synthesis, in vitro acetylcholine-storage-blocking activities, and biological properties of derivatives and analogues of trans-2-(4-phenylpiperidino)cyclohexanol (vesamicol). Rogers GA; Parsons SM; Anderson DC; Nilsson LM; Bahr BA; Kornreich WD; Kaufman R; Jacobs RS; Kirtman B J Med Chem; 1989 Jun; 32(6):1217-30. PubMed ID: 2724295 [TBL] [Abstract][Full Text] [Related]
14. Purification of the vesamicol receptor. Bahr BA; Parsons SM Biochemistry; 1992 Jun; 31(25):5763-9. PubMed ID: 1377025 [TBL] [Abstract][Full Text] [Related]
15. Photoaffinity labeling of the acetylcholine transporter. Rogers GA; Parsons SM Biochemistry; 1992 Jun; 31(25):5770-7. PubMed ID: 1319201 [TBL] [Abstract][Full Text] [Related]
16. Vesamicol blocks the recovery, by recycling cholinergic electromotor synaptic vesicles, of the biophysical characteristics of the reserve population. Rícný J; Whittaker VP Biochim Biophys Acta; 1993 Jun; 1148(2):234-8. PubMed ID: 8504117 [TBL] [Abstract][Full Text] [Related]
17. Translocation of cytosolic acetylcholine into synaptic vesicles and demonstration of vesicular release. Michaelson DM; Burstein M; Licht R J Biol Chem; 1986 May; 261(15):6831-5. PubMed ID: 3700417 [TBL] [Abstract][Full Text] [Related]
18. Cholinergic synaptic vesicles are metabolically and biophysically heterogeneous even in resting terminals. Whittaker VP Brain Res; 1990 Mar; 511(1):113-21. PubMed ID: 2331609 [TBL] [Abstract][Full Text] [Related]
19. Biochemical evidence that acetylcholine release from cholinergic nerve terminals is mostly vesicular. Michaelson DM; Burstein M FEBS Lett; 1985 Sep; 188(2):389-93. PubMed ID: 4029394 [TBL] [Abstract][Full Text] [Related]
20. The effect of the acetylcholine transport blocker 2-(4-phenylpiperidino) cyclohexanol (AH5183) on the subcellular storage and release of acetylcholine in mouse brain. Carroll PT Brain Res; 1985 Dec; 358(1-2):200-9. PubMed ID: 4075114 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]