These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 31670502)

  • 1. Genetically Encoded Fluorescent Amino Acid for Monitoring Protein Interactions through FRET.
    Huang SM; Yang F; Cai BY; He QT; Liu Q; Qu CX; Han MJ; Kong W; Jia YL; Li F; Yu X; Sun JP; Wang J
    Anal Chem; 2019 Dec; 91(23):14936-14942. PubMed ID: 31670502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A genetically encoded small-size fluorescent pair reveals allosteric conformational changes of G proteins upon its interaction with GPCRs by fluorescence lifetime based FRET.
    Shi P; Zhang Y; Lv P; Fang W; Ling S; Guo X; Li D; Liu S; Sun D; Zhang L; Liu D; Zheng JS; Tian C
    Chem Commun (Camb); 2020 Jun; 56(51):6941-6944. PubMed ID: 32435777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic Incorporation of Fluorescent Amino Acid into Fatty Acid Binding Protein for Fatty Acid Detection.
    Yang K; Yu M; Zhu X; Xia Y; Li F; Li Y; Liu X; Wang J
    J Mol Biol; 2022 Apr; 434(8):167498. PubMed ID: 35183558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An intrinsic FRET sensor of protein-ligand interactions.
    Gleason PR; Kelly PI; Grisingher DW; Mills JH
    Org Biomol Chem; 2020 Jun; 18(21):4079-4084. PubMed ID: 32427252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyanotryptophans as Novel Fluorescent Probes for Studying Protein Conformational Changes and DNA-Protein Interaction.
    Talukder P; Chen S; Roy B; Yakovchuk P; Spiering MM; Alam MP; Madathil MM; Bhattacharya C; Benkovic SJ; Hecht SM
    Biochemistry; 2015 Dec; 54(51):7457-69. PubMed ID: 26618501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FRET-based analysis of protein-nucleic acid interactions by genetically incorporating a fluorescent amino acid.
    Park H; Kang H; Ko W; Lee W; Jo K; Lee HS
    Amino Acids; 2015 Apr; 47(4):729-34. PubMed ID: 25540052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A genetically encoded fluorescent amino acid.
    Wang J; Xie J; Schultz PG
    J Am Chem Soc; 2006 Jul; 128(27):8738-9. PubMed ID: 16819861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis of a fluorescent protein with extreme pseudo-Stokes shift by introducing a genetically encoded non-natural amino acid outside the fluorophore.
    Kuhn SM; Rubini M; Müller MA; Skerra A
    J Am Chem Soc; 2011 Mar; 133(11):3708-11. PubMed ID: 21341705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FRETing about the details: Case studies in the use of a genetically encoded fluorescent amino acid for distance-dependent energy transfer.
    Cory MB; Jones CM; Shaffer KD; Venkatesh Y; Giannakoulias S; Perez RM; Lougee MG; Hummingbird E; Pagar VV; Hurley CM; Li A; Mach RH; Kohli RM; Petersson EJ
    Protein Sci; 2023 May; 32(5):e4633. PubMed ID: 36974585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Unique Genetically Encoded FRET Pair in Mammalian Cells.
    Mitchell AL; Addy PS; Chin MA; Chatterjee A
    Chembiochem; 2017 Mar; 18(6):511-514. PubMed ID: 28093840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-natural amino acid fluorophores for one- and two-step fluorescence resonance energy transfer applications.
    Rogers JM; Lippert LG; Gai F
    Anal Biochem; 2010 Apr; 399(2):182-9. PubMed ID: 20036210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical lock-in detection of FRET using synthetic and genetically encoded optical switches.
    Mao S; Benninger RK; Yan Y; Petchprayoon C; Jackson D; Easley CJ; Piston DW; Marriott G
    Biophys J; 2008 Jun; 94(11):4515-24. PubMed ID: 18281383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Position-specific incorporation of fluorescent non-natural amino acids into maltose-binding protein for detection of ligand binding by FRET and fluorescence quenching.
    Iijima I; Hohsaka T
    Chembiochem; 2009 Apr; 10(6):999-1006. PubMed ID: 19301314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein labeling for FRET with methoxycoumarin and acridonylalanine.
    Jones CM; Venkatesh Y; Petersson EJ
    Methods Enzymol; 2020; 639():37-69. PubMed ID: 32475410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Live cell monitoring of glycine betaine by FRET-based genetically encoded nanosensor.
    Ahmad M; Ameen S; Siddiqi TO; Khan P; Ahmad A
    Biosens Bioelectron; 2016 Dec; 86():169-175. PubMed ID: 27371825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective determination of tryptophan-containing peptides through precolumn derivatization and liquid chromatography using intramolecular fluorescence resonance energy transfer detection.
    Yoshitake M; Sejima N; Yoshida H; Todoroki K; Nohta H; Yamaguchi M
    Anal Sci; 2007 Aug; 23(8):949-53. PubMed ID: 17690426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation of Intramolecular FRET Probes via Noncanonical Amino Acid Mutagenesis.
    Brand S; Wu YW
    Methods Mol Biol; 2018; 1728():327-335. PubMed ID: 29405008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural Basis for Blocked Excited State Proton Transfer in a Fluorescent, Photoacidic Non-Canonical Amino Acid-Containing Antibody Fragment.
    Henderson JN; Simmons CR; Mills JH
    J Mol Biol; 2022 Apr; 434(8):167455. PubMed ID: 35033559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A FRET-based method for monitoring septin polymerization and binding of septin-associated proteins.
    Booth EA; Thorner J
    Methods Cell Biol; 2016; 136():35-56. PubMed ID: 27473902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of probes for cellular functions using fluorescent proteins and fluorescence resonance energy transfer.
    Miyawaki A
    Annu Rev Biochem; 2011; 80():357-73. PubMed ID: 21529159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.