These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 31670512)
1. Heterogeneous Clusters of Phthalocyanine and Water Prepared and Probed in Superfluid Helium Nanodroplets. Fischer J; Schlaghaufer F; Lottner EM; Slenczka A; Christiansen L; Stapelfeldt H; Karra M; Friedrich B; Mullan T; Schütz M; Usvyat D J Phys Chem A; 2019 Nov; 123(46):10057-10064. PubMed ID: 31670512 [TBL] [Abstract][Full Text] [Related]
2. Anthracene-Argon Clusters Generated in Superfluid Helium Nanodroplets: New Aspects on Cluster Formation and Microsolvation. Lottner EM; Slenczka A J Phys Chem A; 2020 Jan; 124(2):311-321. PubMed ID: 31257886 [TBL] [Abstract][Full Text] [Related]
3. Formation of heterogeneous clusters in superfluid helium nanodroplets: phthalocyanine and water. Fischer J; Slenczka A Phys Chem Chem Phys; 2023 Jan; 25(4):3287-3297. PubMed ID: 36629317 [TBL] [Abstract][Full Text] [Related]
4. Electronic Spectroscopy of Phthalocyanine and Porphyrin Derivatives in Superfluid Helium Nanodroplets. Slenczka A Molecules; 2017 Jul; 22(8):. PubMed ID: 28757568 [TBL] [Abstract][Full Text] [Related]
5. Microsolvation of porphine molecules in superfluid helium nanodroplets as revealed by optical line shape at the electronic origin. Fischer J; Fuchs S; Slenczka A; Karra M; Friedrich B J Chem Phys; 2018 Dec; 149(24):244306. PubMed ID: 30599728 [TBL] [Abstract][Full Text] [Related]
6. Microsolvation of phthalocyanine molecules in superfluid helium nanodroplets as revealed by the optical line shape at electronic origin. Fuchs S; Fischer J; Slenczka A; Karra M; Friedrich B J Chem Phys; 2018 Apr; 148(14):144301. PubMed ID: 29655329 [TBL] [Abstract][Full Text] [Related]
7. Metastable Aluminum Atoms Floating on the Surface of Helium Nanodroplets. Jeffs J; Besley NA; Stace AJ; Sarma G; Cunningham EM; Boatwright A; Yang S; Ellis AM Phys Rev Lett; 2015 Jun; 114(23):233401. PubMed ID: 26196800 [TBL] [Abstract][Full Text] [Related]
8. Constructing simple yet accurate potentials for describing the solvation of HCl/water clusters in bulk helium and nanodroplets. Boese AD; Forbert H; Masia M; Tekin A; Marx D; Jansen G Phys Chem Chem Phys; 2011 Aug; 13(32):14550-64. PubMed ID: 21687854 [TBL] [Abstract][Full Text] [Related]
9. Electron impact ionization of water-doped superfluid helium nanodroplets: observation of He(H(2)O)(n)(+) clusters. Yang S; Brereton SM; Nandhra S; Ellis AM; Shang B; Yuan LF; Yang J J Chem Phys; 2007 Oct; 127(13):134303. PubMed ID: 17919020 [TBL] [Abstract][Full Text] [Related]
10. Formation of cold ion-neutral clusters using superfluid helium nanodroplets. Falconer TM; Lewis WK; Bemish RJ; Miller RE; Glish GL Rev Sci Instrum; 2010 May; 81(5):054101. PubMed ID: 20515155 [TBL] [Abstract][Full Text] [Related]
11. Structure and dynamics of phthalocyanine-argonn (n = 1-4) complexes studied in helium nanodroplets. Lehnig R; Sebree JA; Slenczka A J Phys Chem A; 2007 Aug; 111(31):7576-84. PubMed ID: 17497836 [TBL] [Abstract][Full Text] [Related]
12. Laser ionization and spectroscopy of Cu in superfluid helium nanodroplets. Lindebner F; Kautsch A; Koch M; Ernst WE Int J Mass Spectrom; 2014 May; 365-366():255-259. PubMed ID: 25844053 [TBL] [Abstract][Full Text] [Related]