These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 31670966)

  • 1. Theoretical Bounds on Electron Energy Filtering in Disordered Nanomaterials.
    Dodin A; Aull B; Kunz RR; Willard AP
    Nano Lett; 2019 Dec; 19(12):8441-8446. PubMed ID: 31670966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size-dependent energy levels of InSb quantum dots measured by scanning tunneling spectroscopy.
    Wang T; Vaxenburg R; Liu W; Rupich SM; Lifshitz E; Efros AL; Talapin DV; Sibener SJ
    ACS Nano; 2015 Jan; 9(1):725-32. PubMed ID: 25531244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.
    Weiss EA
    Acc Chem Res; 2013 Nov; 46(11):2607-15. PubMed ID: 23734589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental Realization of a Quantum Dot Energy Harvester.
    Jaliel G; Puddy RK; Sánchez R; Jordan AN; Sothmann B; Farrer I; Griffiths JP; Ritchie DA; Smith CG
    Phys Rev Lett; 2019 Sep; 123(11):117701. PubMed ID: 31573223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron-conducting quantum dot solids: novel materials based on colloidal semiconductor nanocrystals.
    Vanmaekelbergh D; Liljeroth P
    Chem Soc Rev; 2005 Apr; 34(4):299-312. PubMed ID: 15778764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of single silicon quantum dots' band gap and single-electron charging energies by room temperature scanning tunneling microscopy.
    Zaknoon B; Bahir G; Saguy C; Edrei R; Hoffman A; Rao RA; Muralidhar R; Chang KM
    Nano Lett; 2008 Jun; 8(6):1689-94. PubMed ID: 18484776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics.
    Ten Cate S; Sandeep CS; Liu Y; Law M; Kinge S; Houtepen AJ; Schins JM; Siebbeles LD
    Acc Chem Res; 2015 Feb; 48(2):174-81. PubMed ID: 25607377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carrier multiplication in semiconductor nanocrystals: theoretical screening of candidate materials based on band-structure effects.
    Luo JW; Franceschetti A; Zunger A
    Nano Lett; 2008 Oct; 8(10):3174-81. PubMed ID: 18729418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
    Gabor NM
    Acc Chem Res; 2013 Jun; 46(6):1348-57. PubMed ID: 23369453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy-filtered cold electron transport at room temperature.
    Bhadrachalam P; Subramanian R; Ray V; Ma LC; Wang W; Kim J; Cho K; Koh SJ
    Nat Commun; 2014 Sep; 5():4745. PubMed ID: 25204839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of an excitonic ground state in InAs/InSb quantum dots.
    He L; Bester G; Zunger A
    Phys Rev Lett; 2005 Jan; 94(1):016801. PubMed ID: 15698111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge Carrier Hopping Dynamics in Homogeneously Broadened PbS Quantum Dot Solids.
    Gilmore RH; Lee EM; Weidman MC; Willard AP; Tisdale WA
    Nano Lett; 2017 Feb; 17(2):893-901. PubMed ID: 28100050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron Raman Scattering and Raman Gain in Pyramidal Semiconductor Quantum Dots.
    Monsaleve-Calderón K; Gil-Corrales A; Morales AL; Restrepo RL; Mora-Ramos ME; Duque CA
    J Nanosci Nanotechnol; 2017 Feb; 17(2):1140-148. PubMed ID: 29676880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A modeling and convolution method to measure compositional variations in strained alloy quantum dots.
    Crozie PA; Catalano M; Cingolani R
    Ultramicroscopy; 2003 Jan; 94(1):1-18. PubMed ID: 12489591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial variation of available electronic excitations within individual quantum dots.
    Jung HJ; Dasgupta NP; Van Stockum PB; Koh AL; Sinclair R; Prinz FB
    Nano Lett; 2013 Feb; 13(2):716-21. PubMed ID: 23276278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the energy landscape of the charge transport levels in organic semiconductors at the molecular scale.
    Cornil J; Verlaak S; Martinelli N; Mityashin A; Olivier Y; Van Regemorter T; D'Avino G; Muccioli L; Zannoni C; Castet F; Beljonne D; Heremans P
    Acc Chem Res; 2013 Feb; 46(2):434-43. PubMed ID: 23140088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoelectron spectroscopy of CdSe nanocrystals in the gas phase: a direct measure of the evanescent electron wave function of quantum dots.
    Xiong W; Hickstein DD; Schnitzenbaumer KJ; Ellis JL; Palm BB; Keister KE; Ding C; Miaja-Avila L; Dukovic G; Jimenez JL; Murnane MM; Kapteyn HC
    Nano Lett; 2013 Jun; 13(6):2924-30. PubMed ID: 23688290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum confinement in group III-V semiconductor 2D nanostructures.
    Cipriano LA; Di Liberto G; Tosoni S; Pacchioni G
    Nanoscale; 2020 Sep; 12(33):17494-17501. PubMed ID: 32808618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Giant, level-dependent g factors in InSb nanowire quantum dots.
    Nilsson HA; Caroff P; Thelander C; Larsson M; Wagner JB; Wernersson LE; Samuelson L; Xu HQ
    Nano Lett; 2009 Sep; 9(9):3151-6. PubMed ID: 19736971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical Transport in Colloidal Quantum Dot Films.
    Guyot-Sionnest P
    J Phys Chem Lett; 2012 May; 3(9):1169-75. PubMed ID: 26288053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.