These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 31671138)

  • 21. The importance of postural cues for determining eye height in immersive virtual reality.
    Leyrer M; Linkenauger SA; Bülthoff HH; Mohler BJ
    PLoS One; 2015; 10(5):e0127000. PubMed ID: 25993274
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Virtually the same? How impaired sensory information in virtual reality may disrupt vision for action.
    Harris DJ; Buckingham G; Wilson MR; Vine SJ
    Exp Brain Res; 2019 Nov; 237(11):2761-2766. PubMed ID: 31485708
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Size and shape constancy in consumer virtual reality.
    Hornsey RL; Hibbard PB; Scarfe P
    Behav Res Methods; 2020 Aug; 52(4):1587-1598. PubMed ID: 32399659
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Perceiving distance in virtual reality: theoretical insights from contemporary technologies.
    Creem-Regehr SH; Stefanucci JK; Bodenheimer B
    Philos Trans R Soc Lond B Biol Sci; 2023 Jan; 378(1869):20210456. PubMed ID: 36511405
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Visual perception and the guidance of locomotion without vision to previously seen targets.
    Rieser JJ; Ashmead DH; Talor CR; Youngquist GA
    Perception; 1990; 19(5):675-89. PubMed ID: 2103000
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [On the metric of visual space].
    Silva JA; Aznar-Casanova JA; Pinto-Ribeiro Filho N; Santillán JE
    Arq Bras Oftalmol; 2006; 69(1):127-35. PubMed ID: 16491249
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Virtual-reality techniques resolve the visual cues used by fruit flies to evaluate object distances.
    Schuster S; Strauss R; Götz KG
    Curr Biol; 2002 Sep; 12(18):1591-4. PubMed ID: 12372251
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of top-down knowledge about environmental context in egocentric distance judgments.
    Philbeck JW; Gajewski DA; Jaidzeka SM; Wallin CP
    Atten Percept Psychophys; 2018 Feb; 80(2):586-599. PubMed ID: 29204865
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Can walking motions improve visually induced rotational self-motion illusions in virtual reality?
    Riecke BE; Freiberg JB; Grechkin TY
    J Vis; 2015 Feb; 15(2):. PubMed ID: 25761342
    [TBL] [Abstract][Full Text] [Related]  

  • 30. One-dimensional and multi-dimensional studies of the exocentric distance estimates in frontoparallel plane, virtual space, and outdoor open field.
    Aznar-Casanova JA; Matsushima EH; Ribeiro-Filho NP; Da Silva JA
    Span J Psychol; 2006 Nov; 9(2):273-84. PubMed ID: 17120706
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Serial dependencies between locomotion and visual space.
    Wiesing M; Zimmermann E
    Sci Rep; 2023 Feb; 13(1):3302. PubMed ID: 36849556
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Perceiving virtual geographical slant: action influences perception.
    Creem-Regehr SH; Gooch AA; Sahm CS; Thompson WB
    J Exp Psychol Hum Percept Perform; 2004 Oct; 30(5):811-821. PubMed ID: 15462622
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Apparent distance in actual, three-dimensional video-recorded, and virtual reality.
    Hayashibe K
    Percept Mot Skills; 2002 Oct; 95(2):573-82. PubMed ID: 12434853
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using verbal and blind-walking distance estimates to investigate the two visual systems hypothesis.
    Andre J; Rogers S
    Percept Psychophys; 2006 Apr; 68(3):353-61. PubMed ID: 16900829
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Judging egocentric distance on the ground: occlusion and surface integration.
    He ZJ; Wu B; Ooi TL; Yarbrough G; Wu J
    Perception; 2004; 33(7):789-806. PubMed ID: 15460507
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Familiar size affects perception differently in virtual reality and the real world.
    Rzepka AM; Hussey KJ; Maltz MV; Babin K; Wilcox LM; Culham JC
    Philos Trans R Soc Lond B Biol Sci; 2023 Jan; 378(1869):20210464. PubMed ID: 36511414
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Viewpoint oscillation improves the perception of distance travelled in static observers but not during treadmill walking.
    Bossard M; Goulon C; Mestre D
    Exp Brain Res; 2020 Apr; 238(4):1073-1083. PubMed ID: 32211928
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Visual capture of gait during redirected walking.
    Rothacher Y; Nguyen A; Lenggenhager B; Kunz A; Brugger P
    Sci Rep; 2018 Dec; 8(1):17974. PubMed ID: 30568182
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experience-dependent visual cue recalibration based on discrepancies between visual and haptic percepts.
    Atkins JE; Jacobs RA; Knill DC
    Vision Res; 2003 Nov; 43(25):2603-13. PubMed ID: 14552802
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sensory conflict alters visual perception of action capabilities during crossing of a closing gap in virtual reality.
    Snyder N; Cinelli M
    Q J Exp Psychol (Hove); 2020 Dec; 73(12):2309-2316. PubMed ID: 32640870
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.