BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

591 related articles for article (PubMed ID: 31671359)

  • 1. Reduction-ammoniacal leaching to recycle lithium, cobalt, and nickel from spent lithium-ion batteries with a hydrothermal method: Effect of reductants and ammonium salts.
    Wang S; Wang C; Lai F; Yan F; Zhang Z
    Waste Manag; 2020 Feb; 102():122-130. PubMed ID: 31671359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recycling valuable metals from spent lithium-ion batteries by ammonium sulfite-reduction ammonia leaching.
    Wu C; Li B; Yuan C; Ni S; Li L
    Waste Manag; 2019 Jun; 93():153-161. PubMed ID: 31235052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ammoniacal leaching process for the selective recovery of value metals from waste lithium-ion batteries.
    Liu X; Huang K; Xiong H; Dong H
    Environ Technol; 2023 Jan; 44(2):211-225. PubMed ID: 34383608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recycling of spent lithium-ion batteries: Selective ammonia leaching of valuable metals and simultaneous synthesis of high-purity manganese carbonate.
    Wang C; Wang S; Yan F; Zhang Z; Shen X; Zhang Z
    Waste Manag; 2020 Aug; 114():253-262. PubMed ID: 32682090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recycling of valuable metals from spent lithium-ion batteries by self-supplied reductant roasting.
    Wei N; He Y; Zhang G; Feng Y; Li J; Lu Q; Fu Y
    J Environ Manage; 2023 Mar; 329():117107. PubMed ID: 36566732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal treatment and ammoniacal leaching for the recovery of valuable metals from spent lithium-ion batteries.
    Chen Y; Liu N; Hu F; Ye L; Xi Y; Yang S
    Waste Manag; 2018 May; 75():469-476. PubMed ID: 29478957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching.
    Ku H; Jung Y; Jo M; Park S; Kim S; Yang D; Rhee K; An EM; Sohn J; Kwon K
    J Hazard Mater; 2016 Aug; 313():138-46. PubMed ID: 27060219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spent lithium-ion battery recycling - Reductive ammonia leaching of metals from cathode scrap by sodium sulphite.
    Zheng X; Gao W; Zhang X; He M; Lin X; Cao H; Zhang Y; Sun Z
    Waste Manag; 2017 Feb; 60():680-688. PubMed ID: 27993441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A sustainable process for metal recycling from spent lithium-ion batteries using ammonium chloride.
    Lv W; Wang Z; Cao H; Zheng X; Jin W; Zhang Y; Sun Z
    Waste Manag; 2018 Sep; 79():545-553. PubMed ID: 30343786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Countercurrent leaching of Ni, Co, Mn, and Li from spent lithium-ion batteries.
    Jian Y; Yanqing L; Fangyang L; Ming J; Liangxing J
    Waste Manag Res; 2020 Dec; 38(12):1358-1366. PubMed ID: 32720588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leaching kinetics and interface reaction of LiNi
    Zhu B; Zhang Y; Zou Y; Yang Z; Zhang B; Zhao Y; Zhang M; Meng Q; Dong P
    J Environ Manage; 2021 Dec; 300():113710. PubMed ID: 34509811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel electrochemically driven and internal circulation process for valuable metals recycling from spent lithium-ion batteries.
    Li S; Wu X; Jiang Y; Zhou T; Zhao Y; Chen X
    Waste Manag; 2021 Dec; 136():18-27. PubMed ID: 34634567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose oxidase-based biocatalytic acid-leaching process for recovering valuable metals from spent lithium-ion batteries.
    Fan E; Shi P; Zhang X; Lin J; Wu F; Li L; Chen R
    Waste Manag; 2020 Aug; 114():166-173. PubMed ID: 32679474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organic reductants based leaching: A sustainable process for the recovery of valuable metals from spent lithium ion batteries.
    Chen X; Guo C; Ma H; Li J; Zhou T; Cao L; Kang D
    Waste Manag; 2018 May; 75():459-468. PubMed ID: 29366798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive evaluation on effective leaching of critical metals from spent lithium-ion batteries.
    Gao W; Liu C; Cao H; Zheng X; Lin X; Wang H; Zhang Y; Sun Z
    Waste Manag; 2018 May; 75():477-485. PubMed ID: 29459203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Leaching process for recovering valuable metals from the LiNi
    He LP; Sun SY; Song XF; Yu JG
    Waste Manag; 2017 Jun; 64():171-181. PubMed ID: 28325707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Closed-loop recycling of spent lithium-ion batteries based on selective sulfidation: An unconventional approach.
    Gu K; Gao X; Chen Y; Qin W; Han J
    Waste Manag; 2023 Sep; 169():32-42. PubMed ID: 37393754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching.
    Li L; Bian Y; Zhang X; Guan Y; Fan E; Wu F; Chen R
    Waste Manag; 2018 Jan; 71():362-371. PubMed ID: 29110940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement in leaching process of lithium and cobalt from spent lithium-ion batteries using benzenesulfonic acid system.
    Fu Y; He Y; Qu L; Feng Y; Li J; Liu J; Zhang G; Xie W
    Waste Manag; 2019 Apr; 88():191-199. PubMed ID: 31079631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sustainable recovery of valuable metals from spent lithium-ion batteries using DL-malic acid: Leaching and kinetics aspect.
    Sun C; Xu L; Chen X; Qiu T; Zhou T
    Waste Manag Res; 2018 Feb; 36(2):113-120. PubMed ID: 29212425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.