These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31671541)

  • 21. Improved controllability of opal film growth using capillaries for the deposition process.
    Li HL; Dong W; Bongard HJ; Marlow F
    J Phys Chem B; 2005 May; 109(20):9939-45. PubMed ID: 16852201
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rutile TiO2 inverse opal with photonic bandgap in the UV-visible range.
    Li Y; Piret F; Léonard T; Su BL
    J Colloid Interface Sci; 2010 Aug; 348(1):43-8. PubMed ID: 20466381
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Formation mechanism for hexagonal-structured self-assemblies of nanocrystalline titania templated by cetyltrimethylammonium bromide.
    Sakai T; Yano H; Ohno M; Shibata H; Torigoe K; Utsumi S; Sakamoto K; Koshikawa N; Adachi S; Sakai H; Abe M
    J Oleo Sci; 2008; 57(11):629-37. PubMed ID: 18838836
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photocatalytic degradation of gaseous organic species on photonic band-gap titania.
    Ren M; Ravikrishna R; Valsarai KT
    Environ Sci Technol; 2006 Nov; 40(22):7029-33. PubMed ID: 17154012
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two-dimensional TiO₂ inverse opal with a closed top surface structure for enhanced light extraction from polymer light-emitting diodes.
    Hyun WJ; Lee HK; Oh SS; Hess O; Choi CG; Im SH; Park OO
    Adv Mater; 2011 Apr; 23(16):1846-50. PubMed ID: 21381134
    [No Abstract]   [Full Text] [Related]  

  • 26. Fabricating high-quality opal films with uniform structure over a large area.
    Fudouzi H
    J Colloid Interface Sci; 2004 Jul; 275(1):277-83. PubMed ID: 15158410
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Facile fabrication of crack-free TiO
    Jacob Olasoji A; Hyuck Heo J; Hyuk Im S
    J Colloid Interface Sci; 2025 Jan; 678(Pt B):842-853. PubMed ID: 39270385
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural characterization of colloidal crystals and inverse opals using transmission X-ray microscopy.
    Huang BH; Wang CC; Liao CH; Wu PW; Song YF
    J Colloid Interface Sci; 2014 Jul; 426():199-205. PubMed ID: 24863783
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanoporous Polystyrene Inverse Opal Materials with Optical Interference Properties for Label-Free Biosensing.
    Wang T; Wang L; Ma N; Zhang Y; Liu L; Wan Y; Zhou L; Qian W
    Langmuir; 2024 Sep; 40(37):19517-19527. PubMed ID: 39231009
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of process parameters on the Liquid Flame Spray generated titania nanoparticles.
    Aromaa M; Keskinen H; Mäkelä JM
    Biomol Eng; 2007 Nov; 24(5):543-8. PubMed ID: 17950664
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Highly efficient wettability control via three-dimensional (3D) suspension of titania nanoparticles in polystyrene nanofibers.
    Lee MW; An S; Joshi B; Latthe SS; Yoon SS
    ACS Appl Mater Interfaces; 2013 Feb; 5(4):1232-9. PubMed ID: 23347600
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fast Assembly of Gold Nanoparticles in Large-Area 2D Nanogrids Using a One-Step, Near-Infrared Radiation-Assisted Evaporation Process.
    Utgenannt A; Maspero R; Fortini A; Turner R; Florescu M; Jeynes C; Kanaras AG; Muskens OL; Sear RP; Keddie JL
    ACS Nano; 2016 Feb; 10(2):2232-42. PubMed ID: 26767891
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enzymatic Inverse Opal Hydrogel Particles for Biocatalyst.
    Wang H; Gu H; Chen Z; Shang L; Zhao Z; Gu Z; Zhao Y
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):12914-12918. PubMed ID: 28376299
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lotus Seedpod Inspiration: Particle-Nested Double-Inverse Opal Films with Fast and Reversible Structural Color Switching for Information Security.
    Zhou C; Qi Y; Zhang S; Niu W; Wu S; Ma W; Tang B
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):26384-26393. PubMed ID: 34038074
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Three-dimensionally ordered macroporous titania with structural and photonic effects for enhanced photocatalytic efficiency.
    Wu M; Li Y; Deng Z; Su BL
    ChemSusChem; 2011 Oct; 4(10):1481-8. PubMed ID: 21994156
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hierarchical-structured anatase-titania/cellulose composite sheet with high photocatalytic performance and antibacterial activity.
    Luo Y; Huang J
    Chemistry; 2015 Feb; 21(6):2568-75. PubMed ID: 25487409
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomimetic synthesis of titania nanoparticles induced by protamine.
    Jiang Y; Yang D; Zhang L; Li L; Sun Q; Zhang Y; Li J; Jiang Z
    Dalton Trans; 2008 Aug; (31):4165-71. PubMed ID: 18688435
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Formation of interpenetrating hierarchical titania structures by confined synthesis in inverse opal.
    Mandlmeier B; Szeifert JM; Fattakhova-Rohlfing D; Amenitsch H; Bein T
    J Am Chem Soc; 2011 Nov; 133(43):17274-82. PubMed ID: 21888389
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Low-temperature preparation of TiO2/PS/Fe3O4, and its photocatalytic activity and magnetic recovery].
    Wang XJ; Ren XC; Nian JN; Xiao JQ; Wang G; Chang Q
    Huan Jing Ke Xue; 2012 Aug; 33(8):2752-8. PubMed ID: 23213901
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microwave-assisted synthesis of porous carbon-titania and highly crystalline titania nanostructures.
    Parker A; Marszewski M; Jaroniec M
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):1948-54. PubMed ID: 23432344
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.