These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 31671568)
1. Effects of Three Different Injection-Molding Methods on the Mechanical Properties and Electrical Conductivity of Carbon Nanotube/Polyethylene/Polyamide 6 Nanocomposite. Mi D; Zhao Z; Zhu W Polymers (Basel); 2019 Oct; 11(11):. PubMed ID: 31671568 [TBL] [Abstract][Full Text] [Related]
2. Effects of Orientation and Dispersion on Electrical Conductivity and Mechanical Properties of Carbon Nanotube/Polypropylene Composite. Mi D; Zhao Z; Bai H Polymers (Basel); 2023 May; 15(10):. PubMed ID: 37242948 [TBL] [Abstract][Full Text] [Related]
3. Improved Yield and Electrical Properties of Poly(Lactic Acid)/Carbon Nanotube Composites by Shear and Anneal. Mi D; Zhao Z; Bai H Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297146 [TBL] [Abstract][Full Text] [Related]
4. Thermal, Rheological, Mechanical, and Electrical Properties of Polypropylene/Multi-Walled Carbon Nanotube Nanocomposites. Stanciu NV; Stan F; Sandu IL; Fetecau C; Turcanu AM Polymers (Basel); 2021 Jan; 13(2):. PubMed ID: 33430190 [TBL] [Abstract][Full Text] [Related]
5. Effect of Hybrid Carbon Fillers on the Electrical and Morphological Properties of Polystyrene Nanocomposites in Microinjection Molding. Zhou S; Hrymak AN; Kamal MR Nanomaterials (Basel); 2018 Sep; 8(10):. PubMed ID: 30274379 [TBL] [Abstract][Full Text] [Related]
6. Effect of Aspect Ratio on Electrical, Rheological and Glass Transition Properties of PC/MWCNT Nanocomposites. Cruz H; Son Y J Nanosci Nanotechnol; 2018 Feb; 18(2):943-950. PubMed ID: 29448518 [TBL] [Abstract][Full Text] [Related]
7. Effect of Injection Molding Conditions on Crystalline Structure and Electrical Resistivity of PP/MWCNT Nanocomposites. Zaccone M; Armentano I; Cesano F; Scarano D; Frache A; Torre L; Monti M Polymers (Basel); 2020 Jul; 12(8):. PubMed ID: 32731594 [TBL] [Abstract][Full Text] [Related]
8. Mechanical Recycling of Ethylene-Vinyl Acetate/Carbon Nanotube Nanocomposites: Processing, Thermal, Rheological, Mechanical and Electrical Behavior. Sandu IL; Stan F; Fetecau C Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771884 [TBL] [Abstract][Full Text] [Related]
9. Electrical Conductivity and In Situ SAXS Probing of Block Copolymer Nanocomposites Under Mechanical Stretching. de Sousa RR; Heinze DA; Sacramento JB; Lanfredi AJC; Carastan DJ ACS Appl Mater Interfaces; 2023 Jun; 15(22):27156-27165. PubMed ID: 37235644 [TBL] [Abstract][Full Text] [Related]
10. Development of electrically conductive hybrid composites with a poly(lactic acid) matrix, with enhanced toughness for injection molding, and material extrusion-based additive manufacturing. Petrény R; Tóth C; Horváth A; Mészáros L Heliyon; 2022 Aug; 8(8):e10287. PubMed ID: 36090226 [TBL] [Abstract][Full Text] [Related]
11. Processing Effects on the Through-Plane Electrical Conductivities and Tensile Strengths of Microcellular-Injection-Molded Polypropylene Composites with Carbon Fibers. Chen SC; Jien MY; Hsu CC; Hwang SS; Feng CT Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015508 [TBL] [Abstract][Full Text] [Related]
12. Flavin Mononucleotide-Mediated Formation of Highly Electrically Conductive Hierarchical Monoclinic Multiwalled Carbon Nanotube-Polyamide 6 Nanocomposites. Park M; Yoon S; Park J; Park NH; Ju SY ACS Nano; 2020 Aug; 14(8):10655-10665. PubMed ID: 32806060 [TBL] [Abstract][Full Text] [Related]
14. Morphology Evolution of Polymer Blends under Intense Shear During High Speed Thin-Wall Injection Molding. Zhou Y; Yu F; Deng H; Huang Y; Li G; Fu Q J Phys Chem B; 2017 Jun; 121(25):6257-6270. PubMed ID: 28590755 [TBL] [Abstract][Full Text] [Related]
15. Dielectric Spectroscopy of PP/MWCNT Nanocomposites: Relationship with Crystalline Structure and Injection Molding Condition. Monti M; Zaccone M; Frache A; Torre L; Armentano I Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33671659 [TBL] [Abstract][Full Text] [Related]
16. High Strength Conductive Polyamide 6 Nanocomposites Reinforced by Prebuilt Three-Dimensional Carbon Nanotube Networks. Zheng Y; Wang R; Dong X; Wu L; Zhang X ACS Appl Mater Interfaces; 2018 Aug; 10(33):28103-28111. PubMed ID: 30052027 [TBL] [Abstract][Full Text] [Related]
17. Effect of the Compounding Conditions of Polyamide 6, Carbon Fiber, and Al Kim YS; Kim JK; Jeon ES Materials (Basel); 2019 Sep; 12(18):. PubMed ID: 31546895 [TBL] [Abstract][Full Text] [Related]
18. Conductivity and phase morphology of carbon black-filled immiscible polymer blends under creep: an experimental and theoretical study. Pan Y; Liu X; Hao X; Schubert DW Phys Chem Chem Phys; 2016 Nov; 18(47):32125-32131. PubMed ID: 27847954 [TBL] [Abstract][Full Text] [Related]
19. Effects of Die Configuration on the Electrical Conductivity of Polypropylene Reinforced Milled Carbon Fibers: An Application on a Bipolar Plate. Mohd Radzuan NA; Sulong AB; Rao Somalu M; Majlan EH; Husaini T; Rosli MI Polymers (Basel); 2018 May; 10(5):. PubMed ID: 30966592 [TBL] [Abstract][Full Text] [Related]
20. The Effect of the Preparation Method and the Dispersion and Aspect Ratio of CNTs on the Mechanical and Electrical Properties of Bio-Based Polyamide-4,10/CNT Nanocomposites. Otaegi I; Aranburu N; Iturrondobeitia M; Ibarretxe J; Guerrica-Echevarría G Polymers (Basel); 2019 Dec; 11(12):. PubMed ID: 31835758 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]