These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 31671636)

  • 1. Visualization of Mitochondrial Ca
    Vicente M; Salgado-Almario J; Soriano J; Burgos M; Domingo B; Llopis J
    Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31671636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of complementary luminescent and fluorescent imaging techniques to visualize nuclear and cytoplasmic Ca²⁺ signalling during the in vivo differentiation of slow muscle cells in zebrafish embryos under normal and dystrophic conditions.
    Webb SE; Cheung CC; Chan CM; Love DR; Miller AL
    Clin Exp Pharmacol Physiol; 2012 Jan; 39(1):78-86. PubMed ID: 21824171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of aequorins to record and visualize Ca(2+) dynamics: from subcellular microdomains to whole organisms.
    Webb SE; Rogers KL; Karplus E; Miller AL
    Methods Cell Biol; 2010; 99():263-300. PubMed ID: 21035690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transient expression of apoaequorin in zebrafish embryos: extending the ability to image calcium transients during later stages of development.
    Cheung CY; Webb SE; Meng A; Miller AL
    Int J Dev Biol; 2006; 50(6):561-9. PubMed ID: 16741871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualization, characterization and modulation of calcium signaling during the development of slow muscle cells in intact zebrafish embryos.
    Cheung CY; Webb SE; Love DR; Miller AL
    Int J Dev Biol; 2011; 55(2):153-74. PubMed ID: 21553383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new low-Ca²⁺ affinity GAP indicator to monitor high Ca²⁺ in organelles by luminescence.
    Rodríguez-Prados M; Rojo-Ruiz J; Aulestia FJ; García-Sancho J; Alonso MT
    Cell Calcium; 2015 Dec; 58(6):558-64. PubMed ID: 26412347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Use of Complementary Luminescent and Fluorescent Techniques for Imaging Ca
    Webb SE; Miller AL
    Methods Mol Biol; 2019; 1929():73-93. PubMed ID: 30710268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Introduction of aequorin into zebrafish embryos for recording Ca(2+) signaling during the first 48 h of development.
    Webb SE; Chan CM; Miller AL
    Cold Spring Harb Protoc; 2013 May; 2013(5):383-6. PubMed ID: 23637358
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondria fine-tune the slow Ca(2+) transients induced by electrical stimulation of skeletal myotubes.
    Eisner V; Parra V; Lavandero S; Hidalgo C; Jaimovich E
    Cell Calcium; 2010 Dec; 48(6):358-70. PubMed ID: 21106237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimized Aequorin Reconstitution Protocol to Visualize Calcium Ion Transients in the Heart of Transgenic Zebrafish Embryos In Vivo.
    Vicente M; Salgado-Almario J; Martínez-Sielva A; Llopis J; Domingo B
    Methods Mol Biol; 2022; 2524():271-280. PubMed ID: 35821478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo functional calcium imaging of induced or spontaneous activity in the fly brain using a GFP-apoaequorin-based bioluminescent approach.
    Minocci D; Carbognin E; Murmu MS; Martin JR
    Biochim Biophys Acta; 2013 Jul; 1833(7):1632-40. PubMed ID: 23287020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-Pore Channel 2 activity is required for slow muscle cell-generated Ca(2+) signaling during myogenesis in intact zebrafish.
    Kelu JJ; Chan HL; Webb SE; Cheng AH; Ruas M; Parrington J; Galione A; Miller AL
    Int J Dev Biol; 2015; 59(7-9):313-25. PubMed ID: 26679948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualization of Ca²+ signaling during embryonic skeletal muscle formation in vertebrates.
    Webb SE; Miller AL
    Cold Spring Harb Perspect Biol; 2011 Feb; 3(2):. PubMed ID: 21421918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo monitoring of Ca(2+) uptake into mitochondria of mouse skeletal muscle during contraction.
    Rudolf R; Mongillo M; Magalhães PJ; Pozzan T
    J Cell Biol; 2004 Aug; 166(4):527-36. PubMed ID: 15314066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absence of physiological Ca
    Karam C; Yi J; Xiao Y; Dhakal K; Zhang L; Li X; Manno C; Xu J; Li K; Cheng H; Ma J; Zhou J
    Skelet Muscle; 2017 Apr; 7(1):6. PubMed ID: 28395670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping Calcium Dynamics in the Heart of Zebrafish Embryos with Ratiometric Genetically Encoded Calcium Indicators.
    Salgado-Almario J; Vicente M; Vincent P; Domingo B; Llopis J
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32927644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial Ca(2+) uptake in skeletal muscle health and disease.
    Zhou J; Dhakal K; Yi J
    Sci China Life Sci; 2016 Aug; 59(8):770-6. PubMed ID: 27430885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-invasive in vivo imaging of calcium signaling in mice.
    Rogers KL; Picaud S; Roncali E; Boisgard R; Colasante C; Stinnakre J; Tavitian B; Brûlet P
    PLoS One; 2007 Oct; 2(10):e974. PubMed ID: 17912353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transgenic zebrafish for ratiometric imaging of cytosolic and mitochondrial Ca2+ response in teleost embryo.
    Mizuno H; Sassa T; Higashijima S; Okamoto H; Miyawaki A
    Cell Calcium; 2013 Sep; 54(3):236-45. PubMed ID: 23906585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From Stores to Sinks: Structural Mechanisms of Cytosolic Calcium Regulation.
    Enomoto M; Nishikawa T; Siddiqui N; Chung S; Ikura M; Stathopulos PB
    Adv Exp Med Biol; 2017; 981():215-251. PubMed ID: 29594864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.