These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 31671726)

  • 1. The Proton Density of States in Confined Water (H
    Chen SH; Corsaro C; Mallamace F; Fazio E; Mallamace D
    Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31671726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anomalous behavior of proton zero point motion in water confined in carbon nanotubes.
    Reiter G; Burnham C; Homouz D; Platzman PM; Mayers J; Abdul-Redah T; Moravsky AP; Li JC; Loong CK; Kolesnikov AI
    Phys Rev Lett; 2006 Dec; 97(24):247801. PubMed ID: 17280326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vibrations and reorientations of H2O molecules in [Sr(H2O)6]Cl2 studied by Raman light scattering, incoherent inelastic neutron scattering and proton magnetic resonance.
    Hetmańczyk J; Hetmańczyk L; Migdał-Mikuli A; Mikuli E; Florek-Wojciechowska M; Harańczyk H
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 124():429-40. PubMed ID: 24508882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anharmonicity in a fragile glass-former probed by inelastic neutron scattering.
    Plazanet M; Schober H
    Phys Chem Chem Phys; 2008 Oct; 10(37):5723-9. PubMed ID: 18956107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamical crossover and breakdown of the Stokes-Einstein relation in confined water and in methanol-diluted bulk water.
    Mallamace F; Branca C; Corsaro C; Leone N; Spooren J; Stanley HE; Chen SH
    J Phys Chem B; 2010 Feb; 114(5):1870-8. PubMed ID: 20058894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamical aspects of intermolecular proton transfer in liquid water and low-density amorphous ices.
    Tahat A; Martí J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052130. PubMed ID: 25353762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The protein-solvent glass transition.
    Doster W
    Biochim Biophys Acta; 2010 Jan; 1804(1):3-14. PubMed ID: 19577666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence of dynamic crossover phenomena in water and other glass-forming liquids: experiments, MD simulations and theory.
    Chen SH; Zhang Y; Lagi M; Chong SH; Baglioni P; Mallamace F
    J Phys Condens Matter; 2009 Dec; 21(50):504102. PubMed ID: 21836213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vibrational density of states of hydration water at biomolecular sites: hydrophobicity promotes low density amorphous ice behavior.
    Russo D; Teixeira J; Kneller L; Copley JR; Ollivier J; Perticaroli S; Pellegrini E; Gonzalez MA
    J Am Chem Soc; 2011 Apr; 133(13):4882-8. PubMed ID: 21405120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boson peak in deeply cooled confined water: a possible way to explore the existence of the liquid-to-liquid transition in water.
    Wang Z; Liu KH; Le P; Li M; Chiang WS; Leão JB; Copley JR; Tyagi M; Podlesnyak A; Kolesnikov AI; Mou CY; Chen SH
    Phys Rev Lett; 2014 Jun; 112(23):237802. PubMed ID: 24972226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates.
    Zhao WH; Wang L; Bai J; Yuan LF; Yang J; Zeng XC
    Acc Chem Res; 2014 Aug; 47(8):2505-13. PubMed ID: 25088018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental evidence for a liquid-liquid crossover in deeply cooled confined water.
    Cupane A; Fomina M; Piazza I; Peters J; Schirò G
    Phys Rev Lett; 2014 Nov; 113(21):215701. PubMed ID: 25479506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid-like water confined in stacks of biological membranes at 200 k and its relation to protein dynamics.
    Weik M; Lehnert U; Zaccai G
    Biophys J; 2005 Nov; 89(5):3639-46. PubMed ID: 16055529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calculation of the yields for the primary species formed from the radiolysis of liquid water by fast neutrons at temperatures between 25-350°C.
    Butarbutar SL; Sanguanmith S; Meesungnoen J; Sunaryo GR; Jay-Gerin JP
    Radiat Res; 2014 Jun; 181(6):659-65. PubMed ID: 24828113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple analytical model of water.
    Truskett TM; Dill KA
    Biophys Chem; 2003 Sep; 105(2-3):449-59. PubMed ID: 14499910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fragile-to-strong transition and polyamorphism in the energy landscape of liquid silica.
    Saika-Voivod I; Poole PH; Sciortino F
    Nature; 2001 Aug; 412(6846):514-7. PubMed ID: 11484046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proton momentum distribution in a protein hydration shell.
    Senesi R; Pietropaolo A; Bocedi A; Pagnotta SE; Bruni F
    Phys Rev Lett; 2007 Mar; 98(13):138102. PubMed ID: 17501242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new water anomaly: the temperature dependence of the proton mean kinetic energy.
    Flammini D; Ricci MA; Bruni F
    J Chem Phys; 2009 Jun; 130(23):236101. PubMed ID: 19548768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relaxation processes in room temperature ionic liquids: the case of 1-butyl-3-methyl imidazolium hexafluorophosphate.
    Triolo A; Russina O; Hardacre C; Nieuwenhuyzen M; Gonzalez MA; Grimm H
    J Phys Chem B; 2005 Nov; 109(46):22061-6. PubMed ID: 16853864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low temperature phase properties of water confined in mesoporous silica MCM-41: thermodynamic and neutron scattering study.
    Kittaka S; Takahara S; Matsumoto H; Wada Y; Satoh TJ; Yamaguchi T
    J Chem Phys; 2013 May; 138(20):204714. PubMed ID: 23742507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.