BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 31671773)

  • 1. SL-BioDP: Multi-Cancer Interactive Tool for Prediction of Synthetic Lethality and Response to Cancer Treatment.
    Deng X; Das S; Valdez K; Camphausen K; Shankavaram U
    Cancers (Basel); 2019 Oct; 11(11):. PubMed ID: 31671773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DiscoverSL: an R package for multi-omic data driven prediction of synthetic lethality in cancers.
    Das S; Deng X; Camphausen K; Shankavaram U
    Bioinformatics; 2019 Feb; 35(4):701-702. PubMed ID: 30059974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic Lethal Drug Combinations Targeting Proteasome and Histone Deacetylase Inhibitors in TP53-Mutated Cancers.
    Das S; Deng X; Camphausen K; Shankavaram U
    Arch Cancer Biol Ther; 2020; 1(2):42-47. PubMed ID: 33163985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inferring synthetic lethal interactions from mutual exclusivity of genetic events in cancer.
    Srihari S; Singla J; Wong L; Ragan MA
    Biol Direct; 2015 Oct; 10():57. PubMed ID: 26427375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ranking novel cancer driving synthetic lethal gene pairs using TCGA data.
    Ye H; Zhang X; Chen Y; Liu Q; Wei J
    Oncotarget; 2016 Aug; 7(34):55352-55367. PubMed ID: 27438146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pan-Cancer Analysis of Potential Synthetic Lethal Drug Targets Specific to Alterations in DNA Damage Response.
    Das S; Camphausen K; Shankavaram U
    Front Oncol; 2019; 9():1136. PubMed ID: 31709193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Link synthetic lethality to drug sensitivity of cancer cells.
    Wang R; Han Y; Zhao Z; Yang F; Chen T; Zhou W; Wang X; Qi L; Zhao W; Guo Z; Gu Y
    Brief Bioinform; 2019 Jul; 20(4):1295-1307. PubMed ID: 29300844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico prediction of synthetic lethality by meta-analysis of genetic interactions, functions, and pathways in yeast and human cancer.
    Wu M; Li X; Zhang F; Li X; Kwoh CK; Zheng J
    Cancer Inform; 2014; 13(Suppl 3):71-80. PubMed ID: 25452682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-omics characterization of synthetic lethality-related molecular features: implications for SL-based therapeutic target screening.
    Weng S; Ruan H
    FEBS J; 2023 Mar; 290(6):1477-1480. PubMed ID: 36461713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting synthetic lethal interactions in human cancers using graph regularized self-representative matrix factorization.
    Huang J; Wu M; Lu F; Ou-Yang L; Zhu Z
    BMC Bioinformatics; 2019 Dec; 20(Suppl 19):657. PubMed ID: 31870274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthetic lethality between gene defects affecting a single non-essential molecular pathway with reversible steps.
    Zinovyev A; Kuperstein I; Barillot E; Heyer WD
    PLoS Comput Biol; 2013 Apr; 9(4):e1003016. PubMed ID: 23592964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting cancer-specific vulnerability via data-driven detection of synthetic lethality.
    Jerby-Arnon L; Pfetzer N; Waldman YY; McGarry L; James D; Shanks E; Seashore-Ludlow B; Weinstock A; Geiger T; Clemons PA; Gottlieb E; Ruppin E
    Cell; 2014 Aug; 158(5):1199-1209. PubMed ID: 25171417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SynLethDB: synthetic lethality database toward discovery of selective and sensitive anticancer drug targets.
    Guo J; Liu H; Zheng J
    Nucleic Acids Res; 2016 Jan; 44(D1):D1011-7. PubMed ID: 26516187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Syn-lethality: an integrative knowledge base of synthetic lethality towards discovery of selective anticancer therapies.
    Li XJ; Mishra SK; Wu M; Zhang F; Zheng J
    Biomed Res Int; 2014; 2014():196034. PubMed ID: 24864230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic lethality prediction in DNA damage repair, chromatin remodeling and the cell cycle using multi-omics data from cell lines and patients.
    Markowska M; Budzinska MA; Coenen-Stass A; Kang S; Kizling E; Kolmus K; Koras K; Staub E; Szczurek E
    Sci Rep; 2023 Apr; 13(1):7049. PubMed ID: 37120674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SL-scan identifies synthetic lethal interactions in cancer using metabolic networks.
    Zangene E; Marashi SA; Montazeri H
    Sci Rep; 2023 Sep; 13(1):15763. PubMed ID: 37737478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CSSLdb: Discovery of cancer-specific synthetic lethal interactions based on machine learning and statistic inference.
    Dou Y; Ren Y; Zhao X; Jin J; Xiong S; Luo L; Xu X; Yang X; Yu J; Guo L; Liang T
    Comput Biol Med; 2024 Mar; 170():108066. PubMed ID: 38310806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Building high-resolution synthetic lethal networks: a 'Google map' of the cancer cell.
    Paul JM; Templeton SD; Baharani A; Freywald A; Vizeacoumar FJ
    Trends Mol Med; 2014 Dec; 20(12):704-15. PubMed ID: 25446836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic analysis of cancer-specific synthetic lethal interactions provides insight into personalized anticancer therapy.
    Guo L; Dou Y; Xiang Y; Luo L; Xu X; Wang Q; Zhang Y; Liang T
    FEBS J; 2023 Mar; 290(6):1531-1548. PubMed ID: 36181326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SLGNN: synthetic lethality prediction in human cancers based on factor-aware knowledge graph neural network.
    Zhu Y; Zhou Y; Liu Y; Wang X; Li J
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36645245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.