BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 31671773)

  • 21. Identifying collateral and synthetic lethal vulnerabilities within the DNA-damage response.
    Pinoli P; Srihari S; Wong L; Ceri S
    BMC Bioinformatics; 2021 May; 22(1):250. PubMed ID: 33992077
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computational Prediction of Chemical Tools for Identification and Validation of Synthetic Lethal Interaction Networks.
    Bhanumathy KK; Abuhussein O; Vizeacoumar FS; Freywald A; Vizeacoumar FJ; Phenix CP; Price EW; Cao R
    Methods Mol Biol; 2021; 2381():333-358. PubMed ID: 34590285
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SL-Cloud: A Cloud-based resource to support synthetic lethal interaction discovery.
    Tercan B; Qin G; Kim TK; Aguilar B; Phan J; Longabaugh W; Pot D; Kemp CJ; Chambwe N; Shmulevich I
    F1000Res; 2022; 11():493. PubMed ID: 36761837
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational Prediction of Synthetic Lethals in Genome-Scale Metabolic Models Using Fast-SL.
    Raman K; Pratapa A; Mohite O; Balachandran S
    Methods Mol Biol; 2018; 1716():315-336. PubMed ID: 29222760
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polo-like Kinase 1 Inhibition as a Therapeutic Approach to Selectively Target BRCA1-Deficient Cancer Cells by Synthetic Lethality Induction.
    Carbajosa S; Pansa MF; Paviolo NS; Castellaro AM; Andino DL; Nigra AD; García IA; Racca AC; Rodriguez-Berdini L; Angiolini V; Guantay L; Villafañez F; Federico MB; Rodríguez-Baili MC; Caputto BL; Drewes G; Madauss KP; Gloger I; Fernandez E; Gil GA; Bocco JL; Gottifredi V; Soria G
    Clin Cancer Res; 2019 Jul; 25(13):4049-4062. PubMed ID: 30890549
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthetic lethality on drug discovery: an update on cancer therapy.
    Yar MS; Haider K; Gohel V; Siddiqui NA; Kamal A
    Expert Opin Drug Discov; 2020 Jul; 15(7):823-832. PubMed ID: 32228106
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Harnessing Synthetic Lethal Interactions for Personalized Medicine.
    Shieh GS
    J Pers Med; 2022 Jan; 12(1):. PubMed ID: 35055413
    [TBL] [Abstract][Full Text] [Related]  

  • 28. TP53 mutations, expression and interaction networks in human cancers.
    Wang X; Sun Q
    Oncotarget; 2017 Jan; 8(1):624-643. PubMed ID: 27880943
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Overcoming selection bias in synthetic lethality prediction.
    Seale C; Tepeli Y; Gonçalves JP
    Bioinformatics; 2022 Sep; 38(18):4360-4368. PubMed ID: 35876858
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A network-based approach to integrate nutrient microenvironment in the prediction of synthetic lethality in cancer metabolism.
    Apaolaza I; San José-Enériz E; Valcarcel LV; Agirre X; Prosper F; Planes FJ
    PLoS Comput Biol; 2022 Mar; 18(3):e1009395. PubMed ID: 35286311
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Synthetic lethality as a functional tool in basic research and in anticancer therapy].
    Toma M; Skorski T; Sliwiński T
    Postepy Hig Med Dosw (Online); 2014 Sep; 68():1091-103. PubMed ID: 25228518
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Embracing synthetic lethality of novel anticancer therapies.
    Kamal A; Shaik TB; Malik MS
    Expert Opin Drug Discov; 2015 Oct; 10(10):1119-32. PubMed ID: 26211783
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Harnessing DNA Double-Strand Break Repair for Cancer Treatment.
    Trenner A; Sartori AA
    Front Oncol; 2019; 9():1388. PubMed ID: 31921645
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Using graph-based model to identify cell specific synthetic lethal effects.
    Pu M; Cheng K; Li X; Xin Y; Wei L; Jin S; Zheng W; Peng G; Tang Q; Zhou J; Zhang Y
    Comput Struct Biotechnol J; 2023; 21():5099-5110. PubMed ID: 37920819
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SL-Miner: a web server for mining evidence and prioritization of cancer-specific synthetic lethality.
    Liu X; Hu J; Zheng J
    Bioinformatics; 2024 Feb; 40(2):. PubMed ID: 38244572
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fast-SL: an efficient algorithm to identify synthetic lethal sets in metabolic networks.
    Pratapa A; Balachandran S; Raman K
    Bioinformatics; 2015 Oct; 31(20):3299-305. PubMed ID: 26085504
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of synthetic lethality based on a functional network by using machine learning algorithms.
    Li J; Lu L; Zhang YH; Liu M; Chen L; Huang T; Cai YD
    J Cell Biochem; 2019 Jan; 120(1):405-416. PubMed ID: 30125975
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The tumor therapy landscape of synthetic lethality.
    Zhang B; Tang C; Yao Y; Chen X; Zhou C; Wei Z; Xing F; Chen L; Cai X; Zhang Z; Sun S; Liu Q
    Nat Commun; 2021 Feb; 12(1):1275. PubMed ID: 33627666
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DNA Double Strand Break Repair - Related Synthetic Lethality.
    Toma M; Skorski T; Sliwinski T
    Curr Med Chem; 2019; 26(8):1446-1482. PubMed ID: 29421999
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A landscape of synthetic viable interactions in cancer.
    Gu Y; Wang R; Han Y; Zhou W; Zhao Z; Chen T; Zhang Y; Peng F; Liang H; Qi L; Zhao W; Yang D; Guo Z
    Brief Bioinform; 2018 Jul; 19(4):644-655. PubMed ID: 28096076
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.