BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 31671781)

  • 1. Tactile Robotic Skin with Pressure Direction Detection.
    Klimaszewski J; Janczak D; Piorun P
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31671781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human Body Parts Proximity Measurement Using Distributed Tactile Robotic Skin.
    Klimaszewski J; Władziński M
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33803791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Texture recognition and localization in amorphous robotic skin.
    Hughes D; Correll N
    Bioinspir Biomim; 2015 Sep; 10(5):055002. PubMed ID: 26352901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Static Tactile Sensing for a Robotic Electronic Skin via an Electromechanical Impedance-Based Approach.
    Liu C; Zhuang Y; Nasrollahi A; Lu L; Haider MF; Chang FK
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32429364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fully printed flexible fingerprint-like three-axis tactile and slip force and temperature sensors for artificial skin.
    Harada S; Kanao K; Yamamoto Y; Arie T; Akita S; Takei K
    ACS Nano; 2014 Dec; 8(12):12851-7. PubMed ID: 25437513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Powered Force Sensors for Multidimensional Tactile Sensing.
    Zhang W; Xi Y; Wang E; Qu X; Yang Y; Fan Y; Shi B; Li Z
    ACS Appl Mater Interfaces; 2022 May; 14(17):20122-20131. PubMed ID: 35452218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transfer of Learning from Vision to Touch: A Hybrid Deep Convolutional Neural Network for Visuo-Tactile 3D Object Recognition.
    Rouhafzay G; Cretu AM; Payeur P
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational intelligence techniques for tactile sensing systems.
    Gastaldo P; Pinna L; Seminara L; Valle M; Zunino R
    Sensors (Basel); 2014 Jun; 14(6):10952-76. PubMed ID: 24949646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grasping Force Control of Multi-Fingered Robotic Hands through Tactile Sensing for Object Stabilization.
    Deng Z; Jonetzko Y; Zhang L; Zhang J
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32075193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Piezoresistive Tactile Sensor Discriminating Multidirectional Forces.
    Jung Y; Lee DG; Park J; Ko H; Lim H
    Sensors (Basel); 2015 Oct; 15(10):25463-73. PubMed ID: 26445045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrahigh-Sensitive Finlike Double-Sided E-Skin for Force Direction Detection.
    Zhao XF; Hang CZ; Wen XH; Liu MY; Zhang H; Yang F; Ma RG; Wang JC; Zhang DW; Lu HL
    ACS Appl Mater Interfaces; 2020 Mar; 12(12):14136-14144. PubMed ID: 32131586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Learning Techniques for Increasing Efficiency of the Robot's Sensor and Control Information Processing.
    Kondratenko Y; Atamanyuk I; Sidenko I; Kondratenko G; Sichevskyi S
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Errors in Tactile Sensors on Some High Level Parameters Used for Manipulation with Robotic Hands.
    Sánchez-Durán JA; Hidalgo-López JA; Castellanos-Ramos J; Oballe-Peinado Ó; Vidal-Verdú F
    Sensors (Basel); 2015 Aug; 15(8):20409-35. PubMed ID: 26295393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multidimensional Tactile Sensor with a Thin Compound Eye-Inspired Imaging System.
    Zhang Y; Chen X; Wang MY; Yu H
    Soft Robot; 2022 Oct; 9(5):861-870. PubMed ID: 34619070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-Area and Low-Cost Force/Tactile Capacitive Sensor for Soft Robotic Applications.
    Pagoli A; Chapelle F; Corrales-Ramon JA; Mezouar Y; Lapusta Y
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A flexible touch-pressure sensor array with wireless transmission system for robotic skin.
    Huang Y; Fang D; Wu C; Wang W; Guo X; Liu P
    Rev Sci Instrum; 2016 Jun; 87(6):065007. PubMed ID: 27370489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A large area tactile sensor patch based on commercial force sensors.
    Vidal-Verdú F; Barquero MJ; Castellanos-Ramos J; Navas-González R; Sánchez JA; Serón J; García-Cerezo A
    Sensors (Basel); 2011; 11(5):5489-507. PubMed ID: 22163910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tactile Interaction Sensor with Millimeter Sensing Acuity.
    Choi E; Kim S; Gong J; Sun H; Kwon M; Seo H; Sul O; Lee SB
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34206489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A high-resolution, ultrabroad-range and sensitive capacitive tactile sensor based on a CNT/PDMS composite for robotic hands.
    Fu X; Zhang J; Xiao J; Kang Y; Yu L; Jiang C; Pan Y; Dong H; Gao S; Wang Y
    Nanoscale; 2021 Nov; 13(44):18780-18788. PubMed ID: 34750598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial skin through super-sensing method and electrical impedance data from conductive fabric with aid of deep learning.
    Duan X; Taurand S; Soleimani M
    Sci Rep; 2019 Jun; 9(1):8831. PubMed ID: 31222040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.