These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. A new combined approach of neural-metaheuristic algorithms for predicting and appraisal of landslide susceptibility mapping. Moayedi H; Dehrashid AA Environ Sci Pollut Res Int; 2023 Jul; 30(34):82964-82989. PubMed ID: 37336850 [TBL] [Abstract][Full Text] [Related]
4. Introducing a novel multi-layer perceptron network based on stochastic gradient descent optimized by a meta-heuristic algorithm for landslide susceptibility mapping. Hong H; Tsangaratos P; Ilia I; Loupasakis C; Wang Y Sci Total Environ; 2020 Nov; 742():140549. PubMed ID: 32629264 [TBL] [Abstract][Full Text] [Related]
5. Spatial prediction of landslide susceptibility using hybrid support vector regression (SVR) and the adaptive neuro-fuzzy inference system (ANFIS) with various metaheuristic algorithms. Panahi M; Gayen A; Pourghasemi HR; Rezaie F; Lee S Sci Total Environ; 2020 Nov; 741():139937. PubMed ID: 32574917 [TBL] [Abstract][Full Text] [Related]
6. Flood susceptibility mapping in Dingnan County (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm. Wang Y; Hong H; Chen W; Li S; Panahi M; Khosravi K; Shirzadi A; Shahabi H; Panahi S; Costache R J Environ Manage; 2019 Oct; 247():712-729. PubMed ID: 31279803 [TBL] [Abstract][Full Text] [Related]
7. Landslide Susceptibility Mapping Using Machine Learning Algorithms and Remote Sensing Data in a Tropical Environment. Nhu VH; Mohammadi A; Shahabi H; Ahmad BB; Al-Ansari N; Shirzadi A; Clague JJ; Jaafari A; Chen W; Nguyen H Int J Environ Res Public Health; 2020 Jul; 17(14):. PubMed ID: 32650595 [TBL] [Abstract][Full Text] [Related]
8. Convolutional neural network (CNN) with metaheuristic optimization algorithms for landslide susceptibility mapping in Icheon, South Korea. Hakim WL; Rezaie F; Nur AS; Panahi M; Khosravi K; Lee CW; Lee S J Environ Manage; 2022 Mar; 305():114367. PubMed ID: 34968941 [TBL] [Abstract][Full Text] [Related]
9. Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms. Razavi Termeh SV; Kornejady A; Pourghasemi HR; Keesstra S Sci Total Environ; 2018 Feb; 615():438-451. PubMed ID: 28988080 [TBL] [Abstract][Full Text] [Related]
10. Slope Stability Monitoring Using Novel Remote Sensing Based Fuzzy Logic. Moayedi H; Tien Bui D; Kok Foong L Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31653112 [TBL] [Abstract][Full Text] [Related]
11. Spatial prediction of flood potential using new ensembles of bivariate statistics and artificial intelligence: A case study at the Putna river catchment of Romania. Costache R; Tien Bui D Sci Total Environ; 2019 Nov; 691():1098-1118. PubMed ID: 31466192 [TBL] [Abstract][Full Text] [Related]
12. Optimizing an Adaptive Neuro-Fuzzy Inference System for Spatial Prediction of Landslide Susceptibility Using Four State-of-the-art Metaheuristic Techniques. Mehrabi M; Pradhan B; Moayedi H; Alamri A Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32204505 [TBL] [Abstract][Full Text] [Related]
13. A novel evolutionary combination of artificial intelligence algorithm and machine learning for landslide susceptibility mapping in the west of Iran. Shen Y; Ahmadi Dehrashid A; Bahar RA; Moayedi H; Nasrollahizadeh B Environ Sci Pollut Res Int; 2023 Dec; 30(59):123527-123555. PubMed ID: 37987977 [TBL] [Abstract][Full Text] [Related]
14. Landslide susceptibility mapping by integrating analytical hierarchy process, frequency ratio, and fuzzy gamma operator models, case study: North of Lorestan Province, Iran. Eitvandi N; Sarikhani R; Derikvand S Environ Monit Assess; 2022 Jul; 194(9):600. PubMed ID: 35864313 [TBL] [Abstract][Full Text] [Related]
15. Optimization of state-of-the-art fuzzy-metaheuristic ANFIS-based machine learning models for flood susceptibility prediction mapping in the Middle Ganga Plain, India. Arora A; Arabameri A; Pandey M; Siddiqui MA; Shukla UK; Bui DT; Mishra VN; Bhardwaj A Sci Total Environ; 2021 Jan; 750():141565. PubMed ID: 32882492 [TBL] [Abstract][Full Text] [Related]
16. Game-theoretic optimization of landslide susceptibility mapping: a comparative study between Bayesian-optimized basic neural network and new generation neural network models. Mallick J; Alkahtani M; Hang HT; Singh CK Environ Sci Pollut Res Int; 2024 Apr; 31(20):29811-29835. PubMed ID: 38592629 [TBL] [Abstract][Full Text] [Related]
17. Integration of hard and soft supervised machine learning for flood susceptibility mapping. Andaryani S; Nourani V; Haghighi AT; Keesstra S J Environ Manage; 2021 Aug; 291():112731. PubMed ID: 33962279 [TBL] [Abstract][Full Text] [Related]
18. The Influence of Different Knowledge-Driven Methods on Landslide Susceptibility Mapping: A Case Study in the Changbai Mountain Area, Northeast China. Ma Z; Qin S; Cao C; Lv J; Li G; Qiao S; Hu X Entropy (Basel); 2019 Apr; 21(4):. PubMed ID: 33267086 [TBL] [Abstract][Full Text] [Related]
19. Landslide Susceptibility Evaluation Using Different Slope Units Based on BP Neural Network. Huang J; Zeng X; Ding L; Yin Y; Li Y Comput Intell Neurosci; 2022; 2022():9923775. PubMed ID: 35655489 [TBL] [Abstract][Full Text] [Related]
20. Comparing probabilistic and statistical methods in landslide susceptibility modeling in Rwanda/Centre-Eastern Africa. Nsengiyumva JB; Luo G; Amanambu AC; Mind'je R; Habiyaremye G; Karamage F; Ochege FU; Mupenzi C Sci Total Environ; 2019 Apr; 659():1457-1472. PubMed ID: 31096356 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]