These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 31671941)

  • 1. Determination of Surface Energy Parameters of Hydrophilic Porous Membranes via a Corrected Contact Angle Approach.
    Han B; Wang X; Zheng J; Liang S; Xiao K; Yu J; Qian Z; Huang X
    Langmuir; 2019 Nov; 35(47):15009-15016. PubMed ID: 31671941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revisiting the Surface Energy Parameters of Standard Test Liquids with a Corrected Contact Angle Method over Rough Surfaces.
    Xu Y; Han B; Xiao K; Yu J; Zheng J; Liang S; Wang X; Xu G; Huang X
    Langmuir; 2022 Sep; 38(35):10760-10767. PubMed ID: 35998607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spreading of liquid drops over porous substrates.
    Starov VM; Zhdanov SA; Kosvintsev SR; Sobolev VD; Velarde MG
    Adv Colloid Interface Sci; 2003 Jul; 104():123-58. PubMed ID: 12818493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface energies of hydrophobic interaction chromatography media by inverse liquid chromatography.
    Bednar I; Tscheliessnig R; Berger E; Podgornik A; Jungbauer A
    J Chromatogr A; 2012 Jan; 1220():115-21. PubMed ID: 22196242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wettability and topography of phospholipid DPPC multilayers deposited by spin-coating on glass, silicon, and mica slides.
    Jurak M; Chibowski E
    Langmuir; 2007 Sep; 23(20):10156-63. PubMed ID: 17722938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The model of rough wetting for hydrophobic steel meshes that mimic Asparagus setaceus leaf.
    Jiang ZX; Geng L; Huang YD; Guan SA; Dong W; Ma ZY
    J Colloid Interface Sci; 2011 Feb; 354(2):866-72. PubMed ID: 21115180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of the Surface Properties of Styrene-Acrylonitrile Random Copolymers from Contact Angle Measurements.
    Adão MH; Saramago BJ; Fernandes AC
    J Colloid Interface Sci; 1999 Sep; 217(1):94-106. PubMed ID: 10441415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of geometrical characteristics of surface roughness on droplet wetting.
    Sheng YJ; Jiang S; Tsao HK
    J Chem Phys; 2007 Dec; 127(23):234704. PubMed ID: 18154406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into bacterial contact angles: difficulties in defining hydrophobicity and surface Gibbs energy.
    Gallardo-Moreno AM; Navarro-Pérez ML; Vadillo-Rodríguez V; Bruque JM; González-Martín ML
    Colloids Surf B Biointerfaces; 2011 Nov; 88(1):373-80. PubMed ID: 21807482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of chemical heterogeneity of biodegradable polymers on surface energy: A static contact angle analysis of polyester model films.
    Belibel R; Avramoglou T; Garcia A; Barbaud C; Mora L
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():998-1006. PubMed ID: 26652458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Range of applicability of the Wenzel and Cassie-Baxter equations for superhydrophobic surfaces.
    Erbil HY; Cansoy CE
    Langmuir; 2009 Dec; 25(24):14135-45. PubMed ID: 19630435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of polymeric membrane surface free energy on cell metabolic functions.
    De Bartolo L; Morelli S; Bader A; Drioli E
    J Mater Sci Mater Med; 2001; 12(10-12):959-63. PubMed ID: 15348348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the Surface Tension of Microporous Membranes Using Contact Angle Measurements.
    Tröger J; Lunkwitz K; Bürger W
    J Colloid Interface Sci; 1997 Oct; 194(2):281-6. PubMed ID: 9398408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-step tailoring surface roughness and surface chemistry to prepare superhydrophobic polyvinylidene fluoride (PVDF) membranes for enhanced membrane distillation performances.
    Qing W; Wang J; Ma X; Yao Z; Feng Y; Shi X; Liu F; Wang P; Tang CY
    J Colloid Interface Sci; 2019 Oct; 553():99-107. PubMed ID: 31200232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Smoothed particle hydrodynamics study of the roughness effect on contact angle and droplet flow.
    Shigorina E; Kordilla J; Tartakovsky AM
    Phys Rev E; 2017 Sep; 96(3-1):033115. PubMed ID: 29346900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the wettability of rough surfaces using simultaneous optical and electrochemical analysis of sessile droplets.
    Zahiri B; Sow PK; Kung CH; Mérida W
    J Colloid Interface Sci; 2017 Sep; 501():34-44. PubMed ID: 28433883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo measurement of the surface energy of human fingernail plates.
    Murdan S; Poojary C; Patel DR; Fernandes J; Haman A; Saundh PS; Sheikh Z
    Int J Cosmet Sci; 2012 Jun; 34(3):257-62. PubMed ID: 22339495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beyond the lotus effect: roughness influences on wetting over a wide surface-energy range.
    Spori DM; Drobek T; Zürcher S; Ochsner M; Sprecher C; Mühlebach A; Spencer ND
    Langmuir; 2008 May; 24(10):5411-7. PubMed ID: 18442274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical Investigation of Wenzel and Cassie Wetting States on Porous Films and Fiber Meshes.
    Onda T
    Langmuir; 2022 Nov; 38(45):13744-13752. PubMed ID: 36322405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.