BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 3167208)

  • 1. Nonheme iron in sickle erythrocyte membranes: association with phospholipids and potential role in lipid peroxidation.
    Kuross SA; Hebbel RP
    Blood; 1988 Oct; 72(4):1278-85. PubMed ID: 3167208
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection, characterization, and bioavailability of membrane-associated iron in the intact sickle red cell.
    Sugihara T; Repka T; Hebbel RP
    J Clin Invest; 1992 Dec; 90(6):2327-32. PubMed ID: 1469090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excess heme in sickle erythrocyte inside-out membranes: possible role in thiol oxidation.
    Kuross SA; Rank BH; Hebbel RP
    Blood; 1988 Apr; 71(4):876-82. PubMed ID: 3355895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The chelation of nonheme iron within sickle erythrocytes by the hydroxypyridinone chelator CP094.
    Hartley A; Rice-Evans C
    Arch Biochem Biophys; 1992 Sep; 297(2):377-82. PubMed ID: 1497355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonrandom association of free iron with membranes of sickle and beta-thalassemic erythrocytes.
    Repka T; Shalev O; Reddy R; Yuan J; Abrahamov A; Rachmilewitz EA; Low PS; Hebbel RP
    Blood; 1993 Nov; 82(10):3204-10. PubMed ID: 8219209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydroxyl radical formation by sickle erythrocyte membranes: role of pathologic iron deposits and cytoplasmic reducing agents.
    Repka T; Hebbel RP
    Blood; 1991 Nov; 78(10):2753-8. PubMed ID: 1668610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deferiprone (L1) chelates pathologic iron deposits from membranes of intact thalassemic and sickle red blood cells both in vitro and in vivo.
    Shalev O; Repka T; Goldfarb A; Grinberg L; Abrahamov A; Olivieri NF; Rachmilewitz EA; Hebbel RP
    Blood; 1995 Sep; 86(5):2008-13. PubMed ID: 7655028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of the erythrocyte (Ca2+ + Mg2+)-ATPase by nonheme iron.
    Leclerc L; Marden M; Poyart C
    Biochim Biophys Acta; 1991 Feb; 1062(1):35-8. PubMed ID: 1825610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Desferrioxamine as a lipid chain-breaking antioxidant in sickle erythrocyte membranes.
    Hartley A; Davies M; Rice-Evans C
    FEBS Lett; 1990 May; 264(1):145-8. PubMed ID: 2159892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron compartments associated with sickle RBC membranes: a mechanism for the targeting of oxidative damage.
    Kuross SA; Rank BH; Hebbel RP
    Prog Clin Biol Res; 1989; 319():601-10; discussion 611-3. PubMed ID: 2622931
    [No Abstract]   [Full Text] [Related]  

  • 11. Transmembrane mobility of phospholipids in sickle erythrocytes: effect of deoxygenation on diffusion and asymmetry.
    Blumenfeld N; Zachowski A; Galacteros F; Beuzard Y; Devaux PF
    Blood; 1991 Feb; 77(4):849-54. PubMed ID: 1993223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The molecular pathobiology of cell membrane iron: the sickle red cell as a model.
    Browne P; Shalev O; Hebbel RP
    Free Radic Biol Med; 1998 Apr; 24(6):1040-8. PubMed ID: 9607615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased susceptibility of the sickle cell membrane Ca2+ + Mg(2+)-ATPase to t-butylhydroperoxide: protective effects of ascorbate and desferal.
    Moore RB; Hulgan TM; Green JW; Jenkins LD
    Blood; 1992 Mar; 79(5):1334-41. PubMed ID: 1531618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane phospholipid abnormalities in pathologic erythrocytes: a model for cell aging.
    Wagner G; Chiu DT; Schwartz RS; Lubin B
    Prog Clin Biol Res; 1985; 195():237-50. PubMed ID: 4059270
    [No Abstract]   [Full Text] [Related]  

  • 15. Sickle cell membranes and oxidative damage.
    Rice-Evans C; Omorphos SC; Baysal E
    Biochem J; 1986 Jul; 237(1):265-9. PubMed ID: 3800879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiation-induced lipid peroxidation and the fluidity of erythrocyte membrane lipids.
    Guille J; Raison JK; Gebicki JM
    Free Radic Biol Med; 1987; 3(2):147-52. PubMed ID: 2822546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The adhesive sickle erythrocyte: cause and consequence of abnormal interactions with endothelium, monocytes/macrophages and model membranes.
    Hebbel RP; Schwartz RS; Mohandas N
    Clin Haematol; 1985 Feb; 14(1):141-61. PubMed ID: 3886233
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of phosphatidylserine-phosphatidylcholine liposomes with sickle erythrocytes. Evidence for altered membrane surface properties.
    Schwartz RS; Düzgünes N; Chiu DT; Lubin B
    J Clin Invest; 1983 Jun; 71(6):1570-80. PubMed ID: 6408122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncoupling of oxidative leak formation from lipid peroxidation in the human erythrocyte membrane by antioxidants and desferrioxamine.
    Deuticke B; Lütkemeier P; Sistemich M
    Biochim Biophys Acta; 1987 May; 899(1):125-8. PubMed ID: 3567189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abnormality of phospholipid transverse diffusion in sickle erythrocytes.
    Zachowski A; Craescu CT; Galacteros F; Devaux PF
    J Clin Invest; 1985 May; 75(5):1713-7. PubMed ID: 3998152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.