BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 31672361)

  • 1. A new pseudo-partition coefficient based on a weather-adjusted multicomponent model for mushroom uptake of pesticides from soil.
    Li Z
    Environ Pollut; 2020 Jan; 256():113372. PubMed ID: 31672361
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Temperature, Relative Humidity, and Soil Properties on the Soil-Air Partitioning of Semivolatile Pesticides: Laboratory Measurements and Predictive Models.
    Davie-Martin CL; Hageman KJ; Chin YP; Rougé V; Fujita Y
    Environ Sci Technol; 2015 Sep; 49(17):10431-9. PubMed ID: 26258946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An improved screening tool for predicting volatilization of pesticides applied to soils.
    Davie-Martin CL; Hageman KJ; Chin YP
    Environ Sci Technol; 2013 Jan; 47(2):868-76. PubMed ID: 23214927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping Plant Bioaccumulation Potentials of Pesticides from Soil Using Satellite-Based Canopy Transpiration Rates.
    Li Z; Ai Z
    Environ Toxicol Chem; 2023 Jan; 42(1):117-129. PubMed ID: 36349963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soil temperature effect in calculating attenuation and retardation factors.
    Paraiba LC; Spadotto CA
    Chemosphere; 2002 Sep; 48(9):905-12. PubMed ID: 12222785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling of the long-term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part II. Projected long-term fate of pesticide residues.
    Scholtz MT; Bidleman TF
    Sci Total Environ; 2007 May; 377(1):61-80. PubMed ID: 17346778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling pesticides in global surface soils: Evaluating spatiotemporal patterns for USEtox-based steady-state concentrations.
    Li Z; Niu S
    Sci Total Environ; 2021 Oct; 791():148412. PubMed ID: 34412385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal pattern models for bioaccumulation of pesticides in common herbaceous and woody plants.
    Li Z
    J Environ Manage; 2020 Dec; 276():111334. PubMed ID: 32980611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surfactant effects on environmental behavior of pesticides.
    Katagi T
    Rev Environ Contam Toxicol; 2008; 194():71-177. PubMed ID: 18069647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioaccumulation of organochlorine pesticides and polychlorinated biphenyls by loaches living in rice paddy fields of Northeast China.
    Zhang H; Lu X; Zhang Y; Ma X; Wang S; Ni Y; Chen J
    Environ Pollut; 2016 Sep; 216():893-901. PubMed ID: 27396615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating the environmental parameters that determine aerobic biodegradation half-lives of pesticides in soil with a multivariable approach.
    Wang Y; Lai A; Latino D; Fenner K; Helbling DE
    Chemosphere; 2018 Oct; 209():430-438. PubMed ID: 29936116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aging of organochlorine pesticides and polychlorinated biphenyls in muck soil: volatilization, bioaccessibility, and degradation.
    Wong F; Bidleman TF
    Environ Sci Technol; 2011 Feb; 45(3):958-63. PubMed ID: 21204520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fate and transport of monoterpenes through soils. Part I. Prediction of temperature dependent soil fate model input-parameters.
    van Roon A; Parsons JR; te Kloeze AM; Govers HA
    Chemosphere; 2005 Nov; 61(5):599-609. PubMed ID: 16219497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uptake kinetics of pesticides chlorpyrifos and tebuconazole in the earthworm Eisenia andrei in two different soils.
    Svobodová M; Šmídová K; Hvězdová M; Hofman J
    Environ Pollut; 2018 May; 236():257-264. PubMed ID: 29414347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soil column leaching of pesticides.
    Katagi T
    Rev Environ Contam Toxicol; 2013; 221():1-105. PubMed ID: 23090630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An improved description of pesticide volatilization: refinement of the pesticide leaching model (PELMO).
    Wolters A; Klein M; Vereecken H
    J Environ Qual; 2004; 33(5):1629-37. PubMed ID: 15356222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental fate of methyl bromide as a soil fumigant.
    Yates SR; Gan J; Papiernik SK
    Rev Environ Contam Toxicol; 2003; 177():45-122. PubMed ID: 12666818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling pesticide volatilization: testing the additional effect of gaseous adsorption on soil solid surfaces.
    Garcia L; Bedos C; Génermont S; Benoit P; Barriuso E; Cellier P
    Environ Sci Technol; 2014 May; 48(9):4991-8. PubMed ID: 24702253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A meta-analysis of pesticide loss in runoff under conventional tillage and no-till management.
    Elias D; Wang L; Jacinthe PA
    Environ Monit Assess; 2018 Jan; 190(2):79. PubMed ID: 29330590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of octanol-air partition coefficients of organochlorine pesticides (OCPs) as a function of temperature: application to air-soil exchange.
    Odabasi M; Cetin B
    J Environ Manage; 2012 Dec; 113():432-9. PubMed ID: 23102644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.