These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 31672365)
1. Effects of biochar nanoparticles on seed germination and seedling growth. Zhang K; Wang Y; Mao J; Chen B Environ Pollut; 2020 Jan; 256():113409. PubMed ID: 31672365 [TBL] [Abstract][Full Text] [Related]
2. The effect of periphyton on seed germination and seedling growth of rice (Oryza sativa) in paddy area. Lu H; Liu J; Kerr PG; Shao H; Wu Y Sci Total Environ; 2017 Feb; 578():74-80. PubMed ID: 27503628 [TBL] [Abstract][Full Text] [Related]
3. Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings. Liao S; Pan B; Li H; Zhang D; Xing B Environ Sci Technol; 2014; 48(15):8581-7. PubMed ID: 24988274 [TBL] [Abstract][Full Text] [Related]
4. Exposure to Copper Oxide Nanoparticles and Arsenic Causes Intergenerational Effects on Rice (Oryza sativa japonica Koshihikari) Seed Germination and Seedling Growth. Liu J; Wolfe K; Cobb GP Environ Toxicol Chem; 2019 Sep; 38(9):1978-1987. PubMed ID: 31162729 [TBL] [Abstract][Full Text] [Related]
5. Getting to the root of the matter: Water-soluble and volatile components in thermally-treated biosolids and biochar differentially regulate maize (Zea mays) seedling growth. Backer R; Ghidotti M; Schwinghamer T; Saeed W; Grenier C; Dion-Laplante C; Fabbri D; Dutilleul P; Seguin P; Smith DL PLoS One; 2018; 13(11):e0206924. PubMed ID: 30388186 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of effectiveness of seed priming with selenium in rice during germination under arsenic stress. Moulick D; Ghosh D; Chandra Santra S Plant Physiol Biochem; 2016 Dec; 109():571-578. PubMed ID: 27838598 [TBL] [Abstract][Full Text] [Related]
7. Seed priming with Se alleviate As induced phytotoxicity during germination and seedling growth by restricting As translocation in rice (Oryza sativa L c.v. IET-4094). Moulick D; Santra SC; Ghosh D Ecotoxicol Environ Saf; 2017 Nov; 145():449-456. PubMed ID: 28779704 [TBL] [Abstract][Full Text] [Related]
8. Germination tests for assessing biochar quality. Rogovska N; Laird D; Cruse RM; Trabue S; Heaton E J Environ Qual; 2012; 41(4):1014-22. PubMed ID: 22751043 [TBL] [Abstract][Full Text] [Related]
9. Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Thuesombat P; Hannongbua S; Akasit S; Chadchawan S Ecotoxicol Environ Saf; 2014 Jun; 104():302-9. PubMed ID: 24726943 [TBL] [Abstract][Full Text] [Related]
10. Protective roles of nitric oxide on seed germination and seedling growth of rice (Oryza sativa L.) under cadmium stress. He J; Ren Y; Chen X; Chen H Ecotoxicol Environ Saf; 2014 Oct; 108():114-9. PubMed ID: 25046853 [TBL] [Abstract][Full Text] [Related]
11. Influence of Environmental Factors, Cultural Practices, and Herbicide Application on Seed Germination and Emergence Ecology of Ischaemum rugosum Salisb. Lim CA; Awan TH; Sta Cruz PC; Chauhan BS PLoS One; 2015; 10(9):e0137256. PubMed ID: 26368808 [TBL] [Abstract][Full Text] [Related]
12. Influence of biochar aged in acidic soil on ecosystem engineers and two tropical agricultural plants. Anyanwu IN; Alo MN; Onyekwere AM; Crosse JD; Nworie O; Chamba EB Ecotoxicol Environ Saf; 2018 May; 153():116-126. PubMed ID: 29425842 [TBL] [Abstract][Full Text] [Related]
13. Phytotoxicity Assessment of Copper Oxide Nanoparticles on the Germination, Early Seedling Growth, and Physiological Responses in Oryza sativa L. Wang W; Liu J; Ren Y; Zhang L; Xue Y; Zhang L; He J Bull Environ Contam Toxicol; 2020 Jun; 104(6):770-777. PubMed ID: 32328666 [TBL] [Abstract][Full Text] [Related]
14. Pyrolysis biochar has negligible effects on soil greenhouse gas production, microbial communities, plant germination, and initial seedling growth. Meschewski E; Holm N; Sharma BK; Spokas K; Minalt N; Kelly JJ Chemosphere; 2019 Aug; 228():565-576. PubMed ID: 31055071 [TBL] [Abstract][Full Text] [Related]
15. Phytotoxicity assessment on corn stover biochar, derived from fast pyrolysis, based on seed germination, early growth, and potential plant cell damage. Li Y; Shen F; Guo H; Wang Z; Yang G; Wang L; Zhang Y; Zeng Y; Deng S Environ Sci Pollut Res Int; 2015 Jun; 22(12):9534-43. PubMed ID: 25628114 [TBL] [Abstract][Full Text] [Related]
16. Influence of biostimulants-seed-priming on Ceratotheca triloba germination and seedling growth under low temperatures, low osmotic potential and salinity stress. Masondo NA; Kulkarni MG; Finnie JF; Van Staden J Ecotoxicol Environ Saf; 2018 Jan; 147():43-48. PubMed ID: 28826029 [TBL] [Abstract][Full Text] [Related]
17. Biochar amendment to lead-contaminated soil: Effects on fluorescein diacetate hydrolytic activity and phytotoxicity to rice. Tan X; Liu Y; Gu Y; Zeng G; Hu X; Wang X; Hu X; Guo Y; Zeng X; Sun Z Environ Toxicol Chem; 2015 Sep; 34(9):1962-8. PubMed ID: 25900615 [TBL] [Abstract][Full Text] [Related]
18. Fundamental and molecular composition characteristics of biochars produced from sugarcane and rice crop residues and by-products. Jeong CY; Dodla SK; Wang JJ Chemosphere; 2016 Jan; 142():4-13. PubMed ID: 26058554 [TBL] [Abstract][Full Text] [Related]
19. Effects of biochar amendment on the soil silicon cycle in a soil-rice ecosystem. Wang Y; Xiao X; Zhang K; Chen B Environ Pollut; 2019 May; 248():823-833. PubMed ID: 30856498 [TBL] [Abstract][Full Text] [Related]
20. Correlations and adsorption mechanisms of aromatic compounds on biochars produced from various biomass at 700 °C. Yang K; Jiang Y; Yang J; Lin D Environ Pollut; 2018 Feb; 233():64-70. PubMed ID: 29053999 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]