BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 31672538)

  • 41. Insights into the stimulatory mechanism of 2-aminoethoxydiphenyl borate on TREK-2 potassium channel.
    Zhuo RG; Liu XY; Zhang SZ; Wei XL; Zheng JQ; Xu JP; Ma XY
    Neuroscience; 2015 Aug; 300():85-93. PubMed ID: 25982558
    [TBL] [Abstract][Full Text] [Related]  

  • 42. External Ba2+ block of the two-pore domain potassium channel TREK-1 defines conformational transition in its selectivity filter.
    Ma XY; Yu JM; Zhang SZ; Liu XY; Wu BH; Wei XL; Yan JQ; Sun HL; Yan HT; Zheng JQ
    J Biol Chem; 2011 Nov; 286(46):39813-22. PubMed ID: 21965685
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Discovery of an Inhibitor for the TREK-1 Channel Targeting an Intermediate Transition State of Channel Gating.
    Ma Y; Luo Q; Fu J; Che Y; Guo F; Mei L; Zhang Q; Li Y; Yang H
    J Med Chem; 2020 Oct; 63(19):10972-10983. PubMed ID: 32877186
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Involvement of intracellular transport in TREK-1c current run-up in 293T cells.
    Andharia N; Joseph A; Hayashi M; Okada M; Matsuda H
    Channels (Austin); 2017 May; 11(3):224-235. PubMed ID: 28085542
    [TBL] [Abstract][Full Text] [Related]  

  • 45. AMP-activated protein kinase inhibits TREK channels.
    Kréneisz O; Benoit JP; Bayliss DA; Mulkey DK
    J Physiol; 2009 Dec; 587(Pt 24):5819-30. PubMed ID: 19840997
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanosensitive TREK-1 two-pore-domain potassium (K
    Wiedmann F; Rinné S; Donner B; Decher N; Katus HA; Schmidt C
    Prog Biophys Mol Biol; 2021 Jan; 159():126-135. PubMed ID: 32553901
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effects of stretch activation on ionic selectivity of the TREK-2 K2P K
    Nematian-Ardestani E; Jarerattanachat V; Aryal P; Sansom MSP; Tucker SJ
    Channels (Austin); 2017 Sep; 11(5):482-486. PubMed ID: 28723241
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Zinc activates TREK-2 potassium channel activity.
    Kim JS; Park JY; Kang HW; Lee EJ; Bang H; Lee JH
    J Pharmacol Exp Ther; 2005 Aug; 314(2):618-25. PubMed ID: 15857947
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Determinants of the anesthetic sensitivity of two-pore domain acid-sensitive potassium channels: molecular cloning of an anesthetic-activated potassium channel from Lymnaea stagnalis.
    Andres-Enguix I; Caley A; Yustos R; Schumacher MA; Spanu PD; Dickinson R; Maze M; Franks NP
    J Biol Chem; 2007 Jul; 282(29):20977-90. PubMed ID: 17548360
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Changes in expression of some two-pore domain potassium channel genes (KCNK) in selected brain regions of developing mice.
    Aller MI; Wisden W
    Neuroscience; 2008 Feb; 151(4):1154-72. PubMed ID: 18222039
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Formation of Functional Heterodimers by TREK-1 and TREK-2 Two-pore Domain Potassium Channel Subunits.
    Lengyel M; Czirják G; Enyedi P
    J Biol Chem; 2016 Jun; 291(26):13649-61. PubMed ID: 27129242
    [TBL] [Abstract][Full Text] [Related]  

  • 52. HCN and K
    Riegelhaupt PM; Tibbs GR; Goldstein PA
    Methods Enzymol; 2018; 602():391-416. PubMed ID: 29588040
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Protein and Chemical Determinants of BL-1249 Action and Selectivity for K
    Pope L; Arrigoni C; Lou H; Bryant C; Gallardo-Godoy A; Renslo AR; Minor DL
    ACS Chem Neurosci; 2018 Dec; 9(12):3153-3165. PubMed ID: 30089357
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Towards a TREK-1/2 (TWIK-Related K+ Channel 1 and 2) dual activator tool compound: Multi-dimensional optimization of BL-1249.
    Iwaki Y; Yashiro K; Kokubo M; Mori T; Wieting JM; McGowan KM; Bridges TM; Engers DW; Denton JS; Kurata H; Lindsley CW
    Bioorg Med Chem Lett; 2019 Jul; 29(13):1601-1604. PubMed ID: 31072652
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inhibition of human TREK-1 channels by bupivacaine.
    Punke MA; Licher T; Pongs O; Friederich P
    Anesth Analg; 2003 Jun; 96(6):1665-1673. PubMed ID: 12760993
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Gene expression of stretch-activated channels and mechanoelectric feedback in the heart.
    Kelly D; Mackenzie L; Hunter P; Smaill B; Saint DA
    Clin Exp Pharmacol Physiol; 2006 Jul; 33(7):642-8. PubMed ID: 16789934
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sequential phosphorylation mediates receptor- and kinase-induced inhibition of TREK-1 background potassium channels.
    Murbartián J; Lei Q; Sando JJ; Bayliss DA
    J Biol Chem; 2005 Aug; 280(34):30175-84. PubMed ID: 16006563
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mtap2 is a constituent of the protein network that regulates twik-related K+ channel expression and trafficking.
    Sandoz G; Tardy MP; Thümmler S; Feliciangeli S; Lazdunski M; Lesage F
    J Neurosci; 2008 Aug; 28(34):8545-52. PubMed ID: 18716213
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sodium permeable and "hypersensitive" TREK-1 channels cause ventricular tachycardia.
    Decher N; Ortiz-Bonnin B; Friedrich C; Schewe M; Kiper AK; Rinné S; Seemann G; Peyronnet R; Zumhagen S; Bustos D; Kockskämper J; Kohl P; Just S; González W; Baukrowitz T; Stallmeyer B; Schulze-Bahr E
    EMBO Mol Med; 2017 Apr; 9(4):403-414. PubMed ID: 28242754
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cross-talk between the mechano-gated K2P channel TREK-1 and the actin cytoskeleton.
    Lauritzen I; Chemin J; Honoré E; Jodar M; Guy N; Lazdunski M; Jane Patel A
    EMBO Rep; 2005 Jul; 6(7):642-8. PubMed ID: 15976821
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.