These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 31672539)
1. Membrane matters: The impact of a nanodisc-bilayer or a detergent microenvironment on the properties of two eubacterial rhodopsins. Ganapathy S; Opdam L; Hontani Y; Frehan S; Chen Q; Hellingwerf KJ; de Groot HJM; Kennis JTM; de Grip WJ Biochim Biophys Acta Biomembr; 2020 Feb; 1862(2):183113. PubMed ID: 31672539 [TBL] [Abstract][Full Text] [Related]
2. Green proteorhodopsin reconstituted into nanoscale phospholipid bilayers (nanodiscs) as photoactive monomers. Ranaghan MJ; Schwall CT; Alder NN; Birge RR J Am Chem Soc; 2011 Nov; 133(45):18318-27. PubMed ID: 21951206 [TBL] [Abstract][Full Text] [Related]
3. Rapid transfer of overexpressed integral membrane protein from the host membrane into soluble lipid nanodiscs without previous purification. Shirzad-Wasei N; van Oostrum J; Bovee-Geurts PH; Kusters LJ; Bosman GJ; DeGrip WJ Biol Chem; 2015 Aug; 396(8):903-15. PubMed ID: 25781680 [TBL] [Abstract][Full Text] [Related]
4. Effect of lipid bilayer properties on the photocycle of green proteorhodopsin. Lindholm L; Ariöz C; Jawurek M; Liebau J; Mäler L; Wieslander Å; von Ballmoos C; Barth A Biochim Biophys Acta; 2015 Aug; 1847(8):698-708. PubMed ID: 25922153 [TBL] [Abstract][Full Text] [Related]
5. Reconstitution of the Rhodopsin-Transducin Complex into Lipid Nanodiscs. Gao Y; Erickson JW; Cerione RA; Ramachandran S Methods Mol Biol; 2019; 2009():317-324. PubMed ID: 31152414 [TBL] [Abstract][Full Text] [Related]
6. Maltose neopentyl glycol-3 (MNG-3) analogues for membrane protein study. Cho KH; Husri M; Amin A; Gotfryd K; Lee HJ; Go J; Kim JW; Loland CJ; Guan L; Byrne B; Chae PS Analyst; 2015 May; 140(9):3157-63. PubMed ID: 25813698 [TBL] [Abstract][Full Text] [Related]
7. Characterization of the ground state dynamics of proteorhodopsin by NMR and optical spectroscopies. Stehle J; Scholz F; Löhr F; Reckel S; Roos C; Blum M; Braun M; Glaubitz C; Dötsch V; Wachtveitl J; Schwalbe H J Biomol NMR; 2012 Dec; 54(4):401-13. PubMed ID: 23160927 [TBL] [Abstract][Full Text] [Related]
8. Functional importance of the oligomer formation of the cyanobacterial H Iizuka A; Kajimoto K; Fujisawa T; Tsukamoto T; Aizawa T; Kamo N; Jung KH; Unno M; Demura M; Kikukawa T Sci Rep; 2019 Jul; 9(1):10711. PubMed ID: 31341208 [TBL] [Abstract][Full Text] [Related]
9. Characterization of co-translationally formed nanodisc complexes with small multidrug transporters, proteorhodopsin and with the E. coli MraY translocase. Roos C; Zocher M; Müller D; Münch D; Schneider T; Sahl HG; Scholz F; Wachtveitl J; Ma Y; Proverbio D; Henrich E; Dötsch V; Bernhard F Biochim Biophys Acta; 2012 Dec; 1818(12):3098-106. PubMed ID: 22960287 [TBL] [Abstract][Full Text] [Related]
10. Functional and structural comparison of the ABC exporter MsbA studied in detergent and reconstituted in nanodiscs. Arana MR; Fiori MC; Altenberg GA Biochem Biophys Res Commun; 2019 May; 512(3):448-452. PubMed ID: 30902387 [TBL] [Abstract][Full Text] [Related]
11. Chimeric proton-pumping rhodopsins containing the cytoplasmic loop of bovine rhodopsin. Sasaki K; Yamashita T; Yoshida K; Inoue K; Shichida Y; Kandori H PLoS One; 2014; 9(3):e91323. PubMed ID: 24621599 [TBL] [Abstract][Full Text] [Related]
13. Non-ionic detergent assists formation of supercharged nanodiscs and insertion of membrane proteins. Tidemand FG; Blemmer S; Johansen NT; Arleth L; Pedersen MC Biochim Biophys Acta Biomembr; 2022 Jun; 1864(6):183884. PubMed ID: 35182589 [TBL] [Abstract][Full Text] [Related]
14. Detergent Titration as an Efficient Method for NMR Resonance Assignments of Membrane Proteins in Lipid-Bilayer Nanodiscs. Bibow S; Böhm R; Modaresi SM; Hiller S Anal Chem; 2020 Jun; 92(11):7786-7793. PubMed ID: 32378880 [TBL] [Abstract][Full Text] [Related]
15. Using Nanodiscs to create water-soluble transmembrane chemoreceptors inserted in lipid bilayers. Boldog T; Li M; Hazelbauer GL Methods Enzymol; 2007; 423():317-35. PubMed ID: 17609138 [TBL] [Abstract][Full Text] [Related]
16. Transducin activation by nanoscale lipid bilayers containing one and two rhodopsins. Bayburt TH; Leitz AJ; Xie G; Oprian DD; Sligar SG J Biol Chem; 2007 May; 282(20):14875-81. PubMed ID: 17395586 [TBL] [Abstract][Full Text] [Related]
17. Factors influencing the solubilization of membrane proteins from Escherichia coli membranes by styrene-maleic acid copolymers. Kopf AH; Dörr JM; Koorengevel MC; Antoniciello F; Jahn H; Killian JA Biochim Biophys Acta Biomembr; 2020 Feb; 1862(2):183125. PubMed ID: 31738899 [TBL] [Abstract][Full Text] [Related]
18. The polar headgroup of the detergent governs the accessibility to water of tryptophan octyl ester in host micelles. Tortech L; Jaxel C; Vincent M; Gallay J; de Foresta B Biochim Biophys Acta; 2001 Sep; 1514(1):76-86. PubMed ID: 11513806 [TBL] [Abstract][Full Text] [Related]
19. G-protein coupled receptor solubilization and purification for biophysical analysis and functional studies, in the total absence of detergent. Jamshad M; Charlton J; Lin YP; Routledge SJ; Bawa Z; Knowles TJ; Overduin M; Dekker N; Dafforn TR; Bill RM; Poyner DR; Wheatley M Biosci Rep; 2015 Apr; 35(2):. PubMed ID: 25720391 [TBL] [Abstract][Full Text] [Related]