BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1579 related articles for article (PubMed ID: 31672585)

  • 1. Four-dimensional bioprinting: Current developments and applications in bone tissue engineering.
    Wan Z; Zhang P; Liu Y; Lv L; Zhou Y
    Acta Biomater; 2020 Jan; 101():26-42. PubMed ID: 31672585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harnessing 4D Printing Bioscaffolds for Advanced Orthopedics.
    Chen X; Han S; Wu W; Wu Z; Yuan Y; Wu J; Liu C
    Small; 2022 Sep; 18(36):e2106824. PubMed ID: 35060321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Four-Dimensional Printing and Shape Memory Materials in Bone Tissue Engineering.
    Zhang X; Yang Y; Yang Z; Ma R; Aimaijiang M; Xu J; Zhang Y; Zhou Y
    Int J Mol Sci; 2023 Jan; 24(1):. PubMed ID: 36614258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 4D bioprinting: the next-generation technology for biofabrication enabled by stimuli-responsive materials.
    Li YC; Zhang YS; Akpek A; Shin SR; Khademhosseini A
    Biofabrication; 2016 Dec; 9(1):012001. PubMed ID: 27910820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Translational biomaterials of four-dimensional bioprinting for tissue regeneration.
    Faber L; Yau A; Chen Y
    Biofabrication; 2023 Oct; 16(1):. PubMed ID: 37757814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 4D printed shape-shifting biomaterials for tissue engineering and regenerative medicine applications.
    Kalogeropoulou M; Díaz-Payno PJ; Mirzaali MJ; van Osch GJVM; Fratila-Apachitei LE; Zadpoor AA
    Biofabrication; 2024 Feb; 16(2):. PubMed ID: 38224616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances and Future Perspectives in 4D Bioprinting.
    Ashammakhi N; Ahadian S; Zengjie F; Suthiwanich K; Lorestani F; Orive G; Ostrovidov S; Khademhosseini A
    Biotechnol J; 2018 Dec; 13(12):e1800148. PubMed ID: 30221837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smart biomaterials: From 3D printing to 4D bioprinting.
    Amukarimi S; Rezvani Z; Eghtesadi N; Mozafari M
    Methods; 2022 Sep; 205():191-199. PubMed ID: 35810960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advancing Frontiers in Bone Bioprinting.
    Ashammakhi N; Hasan A; Kaarela O; Byambaa B; Sheikhi A; Gaharwar AK; Khademhosseini A
    Adv Healthc Mater; 2019 Apr; 8(7):e1801048. PubMed ID: 30734530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of mechanical stiffness and cell density of 3D bioprinted cell-laden scaffolds improves extracellular matrix mineralization and cellular organization for bone tissue engineering.
    Zhang J; Wehrle E; Adamek P; Paul GR; Qin XH; Rubert M; Müller R
    Acta Biomater; 2020 Sep; 114():307-322. PubMed ID: 32673752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 4D printing and stimuli-responsive materials in biomedical aspects.
    Lui YS; Sow WT; Tan LP; Wu Y; Lai Y; Li H
    Acta Biomater; 2019 Jul; 92():19-36. PubMed ID: 31071476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An insight into cell-laden 3D-printed constructs for bone tissue engineering.
    Swetha S; Lavanya K; Sruthi R; Selvamurugan N
    J Mater Chem B; 2020 Nov; 8(43):9836-9862. PubMed ID: 33030166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model.
    Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomaterials in bone and mineralized tissue engineering using 3D printing and bioprinting technologies.
    Rahimnejad M; Rezvaninejad R; Rezvaninejad R; França R
    Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34438382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-laden four-dimensional bioprinting using near-infrared-triggered shape-morphing alginate/polydopamine bioinks.
    Luo Y; Lin X; Chen B; Wei X
    Biofabrication; 2019 Sep; 11(4):045019. PubMed ID: 31394520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A voyage from 3D to 4D printing in nanomedicine and healthcare: part I.
    Kumari G; Abhishek K; Singh S; Hussain A; Altamimi MA; Madhyastha H; Webster TJ; Dev A
    Nanomedicine (Lond); 2022 Feb; 17(4):237-253. PubMed ID: 35109704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 4D-Printed Dynamic Materials in Biomedical Applications: Chemistry, Challenges, and Their Future Perspectives in the Clinical Sector.
    Zhou W; Qiao Z; Nazarzadeh Zare E; Huang J; Zheng X; Sun X; Shao M; Wang H; Wang X; Chen D; Zheng J; Fang S; Li YM; Zhang X; Yang L; Makvandi P; Wu A
    J Med Chem; 2020 Aug; 63(15):8003-8024. PubMed ID: 32255358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy.
    Ma H; Feng C; Chang J; Wu C
    Acta Biomater; 2018 Oct; 79():37-59. PubMed ID: 30165201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Swelling-Dependent Shape-Based Transformation of a Human Mesenchymal Stromal Cells-Laden 4D Bioprinted Construct for Cartilage Tissue Engineering.
    Díaz-Payno PJ; Kalogeropoulou M; Muntz I; Kingma E; Kops N; D'Este M; Koenderink GH; Fratila-Apachitei LE; van Osch GJVM; Zadpoor AA
    Adv Healthc Mater; 2023 Jan; 12(2):e2201891. PubMed ID: 36308047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 4D Printed Cardiac Construct with Aligned Myofibers and Adjustable Curvature for Myocardial Regeneration.
    Wang Y; Cui H; Wang Y; Xu C; Esworthy TJ; Hann SY; Boehm M; Shen YL; Mei D; Zhang LG
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):12746-12758. PubMed ID: 33405502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 79.