These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 31672750)
21. Cryptic ecological diversification of a planktonic estuarine copepod, Acartia tonsa. Chen G; Hare MP Mol Ecol; 2008 Mar; 17(6):1451-68. PubMed ID: 18248575 [TBL] [Abstract][Full Text] [Related]
22. Toxicity of ZnO nanoparticles to the copepod Acartia tonsa, exposed through a phytoplankton diet. Jarvis TA; Miller RJ; Lenihan HS; Bielmyer GK Environ Toxicol Chem; 2013 Jun; 32(6):1264-9. PubMed ID: 23417698 [TBL] [Abstract][Full Text] [Related]
23. Marine aggregates in North Atlantic coast: Microbial characteristics and potential interactions with farmed Atlantic salmon (Salmo salar). Poirier I; Benhaïm D; Poizot E; Gallon RK; Cauvin E; Lemarchand A; Bertrand M; Lelièvre C; Murat A; Benoit F; Méar Y Mar Environ Res; 2020 May; 157():104864. PubMed ID: 32275501 [TBL] [Abstract][Full Text] [Related]
24. Polyethylene microplastics increase the toxicity of chlorpyrifos to the marine copepod Acartia tonsa. Bellas J; Gil I Environ Pollut; 2020 May; 260():114059. PubMed ID: 32004970 [TBL] [Abstract][Full Text] [Related]
25. Ecological effects of scrubber water discharge on coastal plankton: Potential synergistic effects of contaminants reduce survival and feeding of the copepod Acartia tonsa. Koski M; Stedmon C; Trapp S Mar Environ Res; 2017 Aug; 129():374-385. PubMed ID: 28687429 [TBL] [Abstract][Full Text] [Related]
26. Bloom-forming cyanobacteria support copepod reproduction and development in the Baltic Sea. Hogfors H; Motwani NH; Hajdu S; El-Shehawy R; Holmborn T; Vehmaa A; Engström-Öst J; Brutemark A; Gorokhova E PLoS One; 2014; 9(11):e112692. PubMed ID: 25409500 [TBL] [Abstract][Full Text] [Related]
28. Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Vezzulli L; Grande C; Reid PC; Hélaouët P; Edwards M; Höfle MG; Brettar I; Colwell RR; Pruzzo C Proc Natl Acad Sci U S A; 2016 Aug; 113(34):E5062-71. PubMed ID: 27503882 [TBL] [Abstract][Full Text] [Related]
29. Changes in free amino acid content during naupliar development of the Calanoid copepod Acartia tonsa. Rayner TA; Jørgensen NOG; Drillet G; Hansen BW Comp Biochem Physiol A Mol Integr Physiol; 2017 Aug; 210():1-6. PubMed ID: 28483512 [TBL] [Abstract][Full Text] [Related]
30. Inhibition of larval development of the marine copepod Acartia tonsa by four synthetic musk substances. Wollenberger L; Breitholtz M; Ole Kusk K; Bengtsson BE Sci Total Environ; 2003 Apr; 305(1-3):53-64. PubMed ID: 12670757 [TBL] [Abstract][Full Text] [Related]
31. Effects of concentration and size of suspended particles on the ingestion, reproduction and mortality rates of the copepod, Acartia tonsa. Sew G; Calbet A; Drillet G; Todd PA Mar Environ Res; 2018 Sep; 140():251-264. PubMed ID: 30042061 [TBL] [Abstract][Full Text] [Related]
32. Microbial diversity associated with copepods in the North Atlantic subtropical gyre. Shoemaker KM; Moisander PH FEMS Microbiol Ecol; 2015 Jul; 91(7):. PubMed ID: 26077986 [TBL] [Abstract][Full Text] [Related]
33. Influence of environmental conditions on the toxicokinetics of cadmium in the marine copepod Acartia tonsa. Pavlaki MD; Morgado RG; van Gestel CAM; Calado R; Soares AMVM; Loureiro S Ecotoxicol Environ Saf; 2017 Nov; 145():142-149. PubMed ID: 28732297 [TBL] [Abstract][Full Text] [Related]
34. Acute copper toxicity in the euryhaline copepod Acartia tonsa: implications for the development of an estuarine and marine biotic ligand model. Pinho GL; Bianchini A Environ Toxicol Chem; 2010 Aug; 29(8):1834-40. PubMed ID: 20821639 [TBL] [Abstract][Full Text] [Related]
35. Draft Genome Sequences of Shewanella sp. Strain UCD-FRSP16_17 and Nine Vibrio Strains Isolated from Abalone Feces. Vater A; Agbonavbare V; Carlin DA; Carruthers GM; Chac A; Doroud L; Farris SJ; Gudzeva M; Jospin G; Kintner JA; Knauss JP; Lor Y; Pechacek R; Rohner ES; Simmons SM; Verescshagina M; Wirawan CS; Zagal L; Coil DA Genome Announc; 2016 Sep; 4(5):. PubMed ID: 27635000 [TBL] [Abstract][Full Text] [Related]
36. Draft genome sequence of Halorubrum tropicale strain V5, a novel halophilic archaeon isolated from the solar salterns of Cabo Rojo, Puerto Rico. Sánchez-Nieves R; Facciotti MT; Saavedra-Collado S; Dávila-Santiago L; Rodríguez-Carrero R; Montalvo-Rodríguez R Genom Data; 2016 Mar; 7():284-6. PubMed ID: 26981427 [TBL] [Abstract][Full Text] [Related]
37. Ecotoxicological and biochemical mixture effects of an herbicide and a metal at the marine primary producer diatom Thalassiosira weissflogii and the primary consumer copepod Acartia tonsa. Filimonova V; Nys C; De Schamphelaere KAC; Gonçalves F; Marques JC; Gonçalves AMM; De Troch M Environ Sci Pollut Res Int; 2018 Aug; 25(22):22180-22195. PubMed ID: 29804247 [TBL] [Abstract][Full Text] [Related]
38. Effect of 2,4-dihydroxybenzophenone (BP1) on early life-stage development of the marine copepod Acartia tonsa at different temperatures and salinities. Kusk KO; Avdolli M; Wollenberger L Environ Toxicol Chem; 2011 Apr; 30(4):959-66. PubMed ID: 21194178 [TBL] [Abstract][Full Text] [Related]
39. Restricted dispersal in a continuously distributed marine species: common bottlenose dolphins Tursiops truncatus in coastal waters of the western North Atlantic. Rosel PE; Hansen L; Hohn AA Mol Ecol; 2009 Dec; 18(24):5030-45. PubMed ID: 19929901 [TBL] [Abstract][Full Text] [Related]
40. Eggs of the copepod Acartia tonsa Dana require hypoxic conditions to tolerate prolonged embryonic development arrest. Jørgensen TS; Jepsen PM; Petersen HCB; Friis DS; Hansen BW BMC Ecol; 2019 Jan; 19(1):1. PubMed ID: 30646885 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]