BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 31672862)

  • 1. Incomplete genetic reconstitution of B cell pools contributes to prolonged immunosuppression after measles.
    Petrova VN; Sawatsky B; Han AX; Laksono BM; Walz L; Parker E; Pieper K; Anderson CA; de Vries RD; Lanzavecchia A; Kellam P; von Messling V; de Swart RL; Russell CA
    Sci Immunol; 2019 Nov; 4(41):. PubMed ID: 31672862
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Laksono BM; Grosserichter-Wagener C; de Vries RD; Langeveld SAG; Brem MD; van Dongen JJM; Katsikis PD; Koopmans MPG; van Zelm MC; de Swart RL
    J Virol; 2018 Apr; 92(8):. PubMed ID: 29437964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measles immune suppression: lessons from the macaque model.
    de Vries RD; McQuaid S; van Amerongen G; Yüksel S; Verburgh RJ; Osterhaus AD; Duprex WP; de Swart RL
    PLoS Pathog; 2012; 8(8):e1002885. PubMed ID: 22952446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Immune Response in Measles: Virus Control, Clearance and Protective Immunity.
    Griffin DE
    Viruses; 2016 Oct; 8(10):. PubMed ID: 27754341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measles immunity and immunosuppression.
    Griffin DE
    Curr Opin Virol; 2021 Feb; 46():9-14. PubMed ID: 32891958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CD4 T cell control primary measles virus infection of the CNS: regulation is dependent on combined activity with either CD8 T cells or with B cells: CD4, CD8 or B cells alone are ineffective.
    Tishon A; Lewicki H; Andaya A; McGavern D; Martin L; Oldstone MB
    Virology; 2006 Mar; 347(1):234-45. PubMed ID: 16529787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measles virus, immune control, and persistence.
    Griffin DE; Lin WH; Pan CH
    FEMS Microbiol Rev; 2012 May; 36(3):649-62. PubMed ID: 22316382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limited contribution of humoral immunity to the clearance of measles viremia in rhesus monkeys.
    Permar SR; Klumpp SA; Mansfield KG; Carville AA; Gorgone DA; Lifton MA; Schmitz JE; Reimann KA; Polack FP; Griffin DE; Letvin NL
    J Infect Dis; 2004 Sep; 190(5):998-1005. PubMed ID: 15295708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extensive lymphopenia due to apoptosis of uninfected lymphocytes in acute measles patients.
    Okada H; Kobune F; Sato TA; Kohama T; Takeuchi Y; Abe T; Takayama N; Tsuchiya T; Tashiro M
    Arch Virol; 2000; 145(5):905-20. PubMed ID: 10881678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ferrets as a model for morbillivirus pathogenesis, complications, and vaccines.
    Pillet S; Svitek N; von Messling V
    Curr Top Microbiol Immunol; 2009; 330():73-87. PubMed ID: 19203105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measles Infection Dose Responses: Insights from Mathematical Modeling.
    Anelone AJN; Clapham HE
    Bull Math Biol; 2024 Jun; 86(7):85. PubMed ID: 38853189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental measles. II. Infection and immunity in the rhesus macaque.
    Zhu YD; Heath J; Collins J; Greene T; Antipa L; Rota P; Bellini W; McChesney M
    Virology; 1997 Jun; 233(1):85-92. PubMed ID: 9229928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunosuppression caused by measles virus: role of viral proteins.
    Kerdiles YM; Sellin CI; Druelle J; Horvat B
    Rev Med Virol; 2006; 16(1):49-63. PubMed ID: 16237742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies into the mechanism of measles-associated immune suppression during a measles outbreak in the Netherlands.
    Laksono BM; de Vries RD; Verburgh RJ; Visser EG; de Jong A; Fraaij PLA; Ruijs WLM; Nieuwenhuijse DF; van den Ham HJ; Koopmans MPG; van Zelm MC; Osterhaus ADME; de Swart RL
    Nat Commun; 2018 Nov; 9(1):4944. PubMed ID: 30470742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measles virus-induced immunosuppression.
    Schneider-Schaulies S; Schneider-Schaulies J
    Curr Top Microbiol Immunol; 2009; 330():243-69. PubMed ID: 19203113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term measles-induced immunomodulation increases overall childhood infectious disease mortality.
    Mina MJ; Metcalf CJ; de Swart RL; Osterhaus AD; Grenfell BT
    Science; 2015 May; 348(6235):694-9. PubMed ID: 25954009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective immunosuppressive effects of measles virus infection.
    Pelton BK; Hylton W; Denman AM
    Clin Exp Immunol; 1982 Jan; 47(1):19-26. PubMed ID: 6284422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the measles paradox reveals the importance of cellular immunity in regulating viral clearance.
    Morris SE; Yates AJ; de Swart RL; de Vries RD; Mina MJ; Nelson AN; Lin WW; Kouyos RD; Griffin DE; Grenfell BT
    PLoS Pathog; 2018 Dec; 14(12):e1007493. PubMed ID: 30592772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of CD8(+) lymphocytes in control and clearance of measles virus infection of rhesus monkeys.
    Permar SR; Klumpp SA; Mansfield KG; Kim WK; Gorgone DA; Lifton MA; Williams KC; Schmitz JE; Reimann KA; Axthelm MK; Polack FP; Griffin DE; Letvin NL
    J Virol; 2003 Apr; 77(7):4396-400. PubMed ID: 12634396
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prolonged persistence of measles virus RNA is characteristic of primary infection dynamics.
    Lin WH; Kouyos RD; Adams RJ; Grenfell BT; Griffin DE
    Proc Natl Acad Sci U S A; 2012 Sep; 109(37):14989-94. PubMed ID: 22872860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.