BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

481 related articles for article (PubMed ID: 31672910)

  • 61. Structural and mechanistic insights into the function of Leishmania ribosome lacking a single pseudouridine modification.
    Rajan KS; Aryal S; Hiregange DG; Bashan A; Madmoni H; Olami M; Doniger T; Cohen-Chalamish S; Pescher P; Taoka M; Nobe Y; Fedorenko A; Bose T; Zimermann E; Prina E; Aharon-Hefetz N; Pilpel Y; Isobe T; Unger R; Späth GF; Yonath A; Michaeli S
    Cell Rep; 2024 May; 43(5):114203. PubMed ID: 38722744
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The ribosome uses two active mechanisms to unwind messenger RNA during translation.
    Qu X; Wen JD; Lancaster L; Noller HF; Bustamante C; Tinoco I
    Nature; 2011 Jul; 475(7354):118-21. PubMed ID: 21734708
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Structural dynamics of translation elongation factor Tu during aa-tRNA delivery to the ribosome.
    Kavaliauskas D; Chen C; Liu W; Cooperman BS; Goldman YE; Knudsen CR
    Nucleic Acids Res; 2018 Sep; 46(16):8651-8661. PubMed ID: 30107527
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Pseudouridine in RNA: what, where, how, and why.
    Charette M; Gray MW
    IUBMB Life; 2000 May; 49(5):341-51. PubMed ID: 10902565
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Structure-based energetics of mRNA decoding on the ribosome.
    Satpati P; Sund J; Aqvist J
    Biochemistry; 2014 Mar; 53(10):1714-22. PubMed ID: 24564511
    [TBL] [Abstract][Full Text] [Related]  

  • 66. mRNA-Independent way to regulate translation elongation rate in eukaryotic cells.
    Negrutskii B; Vlasenko D; Mirande M; Futernyk P; El'skaya A
    IUBMB Life; 2018 Mar; 70(3):192-196. PubMed ID: 29417736
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Structural insights into translational recoding by frameshift suppressor tRNASufJ.
    Fagan CE; Maehigashi T; Dunkle JA; Miles SJ; Dunham CM
    RNA; 2014 Dec; 20(12):1944-54. PubMed ID: 25352689
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Identification of the Saccharomyces cerevisiae RNA:pseudouridine synthase responsible for formation of psi(2819) in 21S mitochondrial ribosomal RNA.
    Ansmant I; Massenet S; Grosjean H; Motorin Y; Branlant C
    Nucleic Acids Res; 2000 May; 28(9):1941-6. PubMed ID: 10756195
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Peptide bond formation destabilizes Shine-Dalgarno interaction on the ribosome.
    Uemura S; Dorywalska M; Lee TH; Kim HD; Puglisi JD; Chu S
    Nature; 2007 Mar; 446(7134):454-7. PubMed ID: 17377584
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Rate of translation of natural mRNAs in an optimized in vitro system.
    Pavlov MY; Ehrenberg M
    Arch Biochem Biophys; 1996 Apr; 328(1):9-16. PubMed ID: 8638943
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Quality control of mRNA decoding on the bacterial ribosome.
    Rodnina MV
    Adv Protein Chem Struct Biol; 2012; 86():95-128. PubMed ID: 22243582
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The many faces of ribosome translocation along the mRNA: reading frame maintenance, ribosome frameshifting and translational bypassing.
    Poulis P; Peske F; Rodnina MV
    Biol Chem; 2023 Jul; 404(8-9):755-767. PubMed ID: 37077160
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Analysis of the roles of tRNA structure, ribosomal protein L9, and the bacteriophage T4 gene 60 bypassing signals during ribosome slippage on mRNA.
    Herr AJ; Nelson CC; Wills NM; Gesteland RF; Atkins JF
    J Mol Biol; 2001 Jun; 309(5):1029-48. PubMed ID: 11399077
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Synchronized translation for detection of temporal stalling of ribosome during single-turnover translation.
    Endoh T; Kawasaki Y; Sugimoto N
    Anal Chem; 2012 Jan; 84(2):857-61. PubMed ID: 22221219
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Meanderings of the mRNA through the ribosome.
    Culver GM
    Structure; 2001 Sep; 9(9):751-8. PubMed ID: 11566123
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Investigating the consequences of mRNA modifications on protein synthesis using in vitro translation assays.
    Monroe JG; Smith TJ; Koutmou KS
    Methods Enzymol; 2021; 658():379-406. PubMed ID: 34517955
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Transcriptome-wide analysis of pseudouridylation in Drosophila melanogaster.
    Song W; Podicheti R; Rusch DB; Tracey WD
    G3 (Bethesda); 2023 Mar; 13(3):. PubMed ID: 36534986
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Fidelity at the molecular level: lessons from protein synthesis.
    Zaher HS; Green R
    Cell; 2009 Feb; 136(4):746-62. PubMed ID: 19239893
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Sensitive and quantitative probing of pseudouridine modification in mRNA and long noncoding RNA.
    Zhang W; Eckwahl MJ; Zhou KI; Pan T
    RNA; 2019 Sep; 25(9):1218-1225. PubMed ID: 31227565
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Membrane-dependent relief of translation elongation arrest on pseudouridine- and N1-methyl-pseudouridine-modified mRNAs.
    Svitkin YV; Gingras AC; Sonenberg N
    Nucleic Acids Res; 2022 Jul; 50(13):7202-7215. PubMed ID: 34933339
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.