BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 31672913)

  • 1. Structural mechanism of a Rag GTPase activation checkpoint by the lysosomal folliculin complex.
    Lawrence RE; Fromm SA; Fu Y; Yokom AL; Kim DJ; Thelen AM; Young LN; Lim CY; Samelson AJ; Hurley JH; Zoncu R
    Science; 2019 Nov; 366(6468):971-977. PubMed ID: 31672913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryo-EM Structure of the Human FLCN-FNIP2-Rag-Ragulator Complex.
    Shen K; Rogala KB; Chou HT; Huang RK; Yu Z; Sabatini DM
    Cell; 2019 Nov; 179(6):1319-1329.e8. PubMed ID: 31704029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The folliculin tumor suppressor is a GAP for the RagC/D GTPases that signal amino acid levels to mTORC1.
    Tsun ZY; Bar-Peled L; Chantranupong L; Zoncu R; Wang T; Kim C; Spooner E; Sabatini DM
    Mol Cell; 2013 Nov; 52(4):495-505. PubMed ID: 24095279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recruitment of folliculin to lysosomes supports the amino acid-dependent activation of Rag GTPases.
    Petit CS; Roczniak-Ferguson A; Ferguson SM
    J Cell Biol; 2013 Sep; 202(7):1107-22. PubMed ID: 24081491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural mechanism for amino acid-dependent Rag GTPase nucleotide state switching by SLC38A9.
    Fromm SA; Lawrence RE; Hurley JH
    Nat Struct Mol Biol; 2020 Nov; 27(11):1017-1023. PubMed ID: 32868926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GATOR1-dependent recruitment of FLCN-FNIP to lysosomes coordinates Rag GTPase heterodimer nucleotide status in response to amino acids.
    Meng J; Ferguson SM
    J Cell Biol; 2018 Aug; 217(8):2765-2776. PubMed ID: 29848618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the lysosomal mTORC1-TFEB-Rag-Ragulator megacomplex.
    Cui Z; Napolitano G; de Araujo MEG; Esposito A; Monfregola J; Huber LA; Ballabio A; Hurley JH
    Nature; 2023 Feb; 614(7948):572-579. PubMed ID: 36697823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TSC2 regulates lysosome biogenesis via a non-canonical RAGC and TFEB-dependent mechanism.
    Alesi N; Akl EW; Khabibullin D; Liu HJ; Nidhiry AS; Garner ER; Filippakis H; Lam HC; Shi W; Viswanathan SR; Morroni M; Ferguson SM; Henske EP
    Nat Commun; 2021 Jul; 12(1):4245. PubMed ID: 34253722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Folliculin promotes substrate-selective mTORC1 activity by activating RagC to recruit TFE3.
    Li K; Wada S; Gosis BS; Thorsheim C; Loose P; Arany Z
    PLoS Biol; 2022 Mar; 20(3):e3001594. PubMed ID: 35358174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ragulator and SLC38A9 activate the Rag GTPases through noncanonical GEF mechanisms.
    Shen K; Sabatini DM
    Proc Natl Acad Sci U S A; 2018 Sep; 115(38):9545-9550. PubMed ID: 30181260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Architecture of the human GATOR1 and GATOR1-Rag GTPases complexes.
    Shen K; Huang RK; Brignole EJ; Condon KJ; Valenstein ML; Chantranupong L; Bomaliyamu A; Choe A; Hong C; Yu Z; Sabatini DM
    Nature; 2018 Apr; 556(7699):64-69. PubMed ID: 29590090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for FLCN RagC GAP activation in MiT-TFE substrate-selective mTORC1 regulation.
    Jansen RM; Peruzzo R; Fromm SA; Yokom AL; Zoncu R; Hurley JH
    Sci Adv; 2022 Sep; 8(37):eadd2926. PubMed ID: 36103527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for the docking of mTORC1 on the lysosomal surface.
    Rogala KB; Gu X; Kedir JF; Abu-Remaileh M; Bianchi LF; Bottino AMS; Dueholm R; Niehaus A; Overwijn D; Fils AP; Zhou SX; Leary D; Laqtom NN; Brignole EJ; Sabatini DM
    Science; 2019 Oct; 366(6464):468-475. PubMed ID: 31601708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Architecture of human Rag GTPase heterodimers and their complex with mTORC1.
    Anandapadamanaban M; Masson GR; Perisic O; Berndt A; Kaufman J; Johnson CM; Santhanam B; Rogala KB; Sabatini DM; Williams RL
    Science; 2019 Oct; 366(6462):203-210. PubMed ID: 31601764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis for the assembly of the Ragulator-Rag GTPase complex.
    Yonehara R; Nada S; Nakai T; Nakai M; Kitamura A; Ogawa A; Nakatsumi H; Nakayama KI; Li S; Standley DM; Yamashita E; Nakagawa A; Okada M
    Nat Commun; 2017 Nov; 8(1):1625. PubMed ID: 29158492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An mTORC1-mediated negative feedback loop constrains amino acid-induced FLCN-Rag activation in renal cells with TSC2 loss.
    Asrani K; Woo J; Mendes AA; Schaffer E; Vidotto T; Villanueva CR; Feng K; Oliveira L; Murali S; Liu HB; Salles DC; Lam B; Argani P; Lotan TL
    Nat Commun; 2022 Nov; 13(1):6808. PubMed ID: 36357396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arg-78 of Nprl2 catalyzes GATOR1-stimulated GTP hydrolysis by the Rag GTPases.
    Shen K; Valenstein ML; Gu X; Sabatini DM
    J Biol Chem; 2019 Feb; 294(8):2970-2975. PubMed ID: 30651352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [New structures of mTORC1: Focus on Rag GTPases].
    Nawrotek A; Cherfils J
    Med Sci (Paris); 2021 Apr; 37(4):372-378. PubMed ID: 33908855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A substrate-specific mTORC1 pathway underlies Birt-Hogg-DubĂ© syndrome.
    Napolitano G; Di Malta C; Esposito A; de Araujo MEG; Pece S; Bertalot G; Matarese M; Benedetti V; Zampelli A; Stasyk T; Siciliano D; Venuta A; Cesana M; Vilardo C; Nusco E; Monfregola J; Calcagnì A; Di Fiore PP; Huber LA; Ballabio A
    Nature; 2020 Sep; 585(7826):597-602. PubMed ID: 32612235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordination of the leucine-sensing Rag GTPase cycle by leucyl-tRNA synthetase in the mTORC1 signaling pathway.
    Lee M; Kim JH; Yoon I; Lee C; Fallahi Sichani M; Kang JS; Kang J; Guo M; Lee KY; Han G; Kim S; Han JM
    Proc Natl Acad Sci U S A; 2018 Jun; 115(23):E5279-E5288. PubMed ID: 29784813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.