BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 31673007)

  • 1. Effect of shell structure of Ti-immobilized metal ion affinity chromatography core-shell magnetic particles for phosphopeptide enrichment.
    Capriotti AL; Antonelli M; Antonioli D; Cavaliere C; Chiarcos R; Gianotti V; Piovesana S; Sparnacci K; Laus M; Laganà A
    Sci Rep; 2019 Oct; 9(1):15782. PubMed ID: 31673007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New Ti-IMAC magnetic polymeric nanoparticles for phosphopeptide enrichment from complex real samples.
    Capriotti AL; Cavaliere C; Ferraris F; Gianotti V; Laus M; Piovesana S; Sparnacci K; Zenezini Chiozzi R; Laganà A
    Talanta; 2018 Feb; 178():274-281. PubMed ID: 29136822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ti(IV) carrying polydopamine-coated, monodisperse-porous SiO
    Salimi K; Usta DD; Çelikbıçak Ö; Pinar A; Salih B; Tuncel A
    Colloids Surf B Biointerfaces; 2017 May; 153():280-290. PubMed ID: 28279934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Core-shell magnetic bimetallic MOF material for synergistic enrichment of phosphopeptides.
    Cao L; Zhao Y; Chu Z; Zhang X; Zhang W
    Talanta; 2020 Jan; 206():120165. PubMed ID: 31514902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of an enrichment method for endogenous phosphopeptide characterization in human serum.
    La Barbera G; Capriotti AL; Cavaliere C; Ferraris F; Laus M; Piovesana S; Sparnacci K; Laganà A
    Anal Bioanal Chem; 2018 Jan; 410(3):1177-1185. PubMed ID: 29318361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrophilic Phytic Acid-Coated Magnetic Graphene for Titanium(IV) Immobilization as a Novel Hydrophilic Interaction Liquid Chromatography-Immobilized Metal Affinity Chromatography Platform for Glyco- and Phosphopeptide Enrichment with Controllable Selectivity.
    Hong Y; Zhao H; Pu C; Zhan Q; Sheng Q; Lan M
    Anal Chem; 2018 Sep; 90(18):11008-11015. PubMed ID: 30136585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoprobe-based immobilized metal affinity chromatography for sensitive and complementary enrichment of multiply phosphorylated peptides.
    Wu HT; Hsu CC; Tsai CF; Lin PC; Lin CC; Chen YJ
    Proteomics; 2011 Jul; 11(13):2639-53. PubMed ID: 21630456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrophilic Nb⁵⁺-immobilized magnetic core-shell microsphere--A novel immobilized metal ion affinity chromatography material for highly selective enrichment of phosphopeptides.
    Sun X; Liu X; Feng J; Li Y; Deng C; Duan G
    Anal Chim Acta; 2015 Jun; 880():67-76. PubMed ID: 26092339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphopeptide enrichment: Development of magnetic solid phase extraction method based on polydopamine coating and Ti(4+)-IMAC.
    Piovesana S; Capriotti AL; Cavaliere C; Ferraris F; Samperi R; Ventura S; Laganà A
    Anal Chim Acta; 2016 Feb; 909():67-74. PubMed ID: 26851086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and synthesis of an immobilized metal affinity chromatography and metal oxide affinity chromatography hybrid material for improved phosphopeptide enrichment.
    Yang DS; Ding XY; Min HP; Li B; Su MX; Niu MM; Di B; Yan F
    J Chromatogr A; 2017 Jul; 1505():56-62. PubMed ID: 28533032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of immobilized gallium (III) ion affinity chromatography for selective binding and recovery of phosphopeptides from protein digests.
    Aryal UK; Olson DJ; Ross AR
    J Biomol Tech; 2008 Dec; 19(5):296-310. PubMed ID: 19183793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of immobilized Sn
    Lin H; Deng C
    Proteomics; 2016 Nov; 16(21):2733-2741. PubMed ID: 27650410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zirconium(IV)-IMAC Revisited: Improved Performance and Phosphoproteome Coverage by Magnetic Microparticles for Phosphopeptide Affinity Enrichment.
    Arribas Diez I; Govender I; Naicker P; Stoychev S; Jordaan J; Jensen ON
    J Proteome Res; 2021 Jan; 20(1):453-462. PubMed ID: 33226818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrophilic phytic acid-functionalized magnetic dendritic mesoporous silica nanospheres with immobilized Ti
    Hong Y; Zhan Q; Zheng Y; Pu C; Zhao H; Lan M
    Talanta; 2019 May; 197():77-85. PubMed ID: 30771991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequential Elution from IMAC (SIMAC): An Efficient Method for Enrichment and Separation of Mono- and Multi-phosphorylated Peptides.
    Thingholm TE; Larsen MR
    Methods Mol Biol; 2016; 1355():147-60. PubMed ID: 26584924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complementary Fe(3+)- and Ti(4+)-immobilized metal ion affinity chromatography for purification of acidic and basic phosphopeptides.
    Lai AC; Tsai CF; Hsu CC; Sun YN; Chen YJ
    Rapid Commun Mass Spectrom; 2012 Sep; 26(18):2186-94. PubMed ID: 22886815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interface-Engineered Hollow Nanospheres with Titanium(IV) Binding Sites and Microwindows as Affinity Probes for Ultrafast and Enhanced Phosphopeptides Enrichment.
    Li X; Ma S; Tang R; Ou J
    Anal Chem; 2022 Mar; 94(12):5159-5166. PubMed ID: 35300494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graft modification of cotton with phosphate group and its application to the enrichment of phosphopeptides.
    He XM; Chen X; Yuan BF; Feng YQ
    J Chromatogr A; 2017 Feb; 1484():49-57. PubMed ID: 28087055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polydopamine-coated eppendorf tubes for Ti⁴⁺ immobilization for selective enrichment of phosphopeptides.
    Shi C; Deng C; Zou S; Zhang X
    Talanta; 2014 Sep; 127():88-93. PubMed ID: 24913861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.