These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 31673073)
21. Nanostructure PtRu/MWNTs as anode catalysts prepared in a vacuum for direct methanol oxidation. Gu YJ; Wong WT Langmuir; 2006 Dec; 22(26):11447-52. PubMed ID: 17154638 [TBL] [Abstract][Full Text] [Related]
22. Pt, Rh and Pt-Rh nanoparticles on modified single-walled carbon nanotubes for hydrogenation of benzene at room temperature. Liao YJ; Pan HB; Wai CM J Nanosci Nanotechnol; 2011 Oct; 11(10):8580-5. PubMed ID: 22400228 [TBL] [Abstract][Full Text] [Related]
23. Reducible tungsten(VI) oxide-supported ruthenium(0) nanoparticles: highly active catalyst for hydrolytic dehydrogenation of ammonia borane. Akbayrak S; Tonbul Y; Özkar S Turk J Chem; 2023; 47(5):1224-1238. PubMed ID: 38173757 [TBL] [Abstract][Full Text] [Related]
24. Highly efficient hydrogen generation from methanolysis of ammonia borane on CuPd alloy nanoparticles. Li P; Xiao Z; Liu Z; Huang J; Li Q; Sun D Nanotechnology; 2015 Jan; 26(2):025401. PubMed ID: 25518014 [TBL] [Abstract][Full Text] [Related]
25. Size-controllable APTS stabilized ruthenium(0) nanoparticles catalyst for the dehydrogenation of dimethylamine-borane at room temperature. Zahmakıran M; Philippot K; Özkar S; Chaudret B Dalton Trans; 2012 Jan; 41(2):590-8. PubMed ID: 22052298 [TBL] [Abstract][Full Text] [Related]
26. Heat-induced alterations in the surface population of metal sites in bimetallic nanoparticles. Hwang BJ; Sarma LS; Wang GR; Chen CH; Liu DG; Sheu HS; Lee JF Chemistry; 2007; 13(21):6255-64. PubMed ID: 17458913 [TBL] [Abstract][Full Text] [Related]
27. Construction of cost-effective bimetallic nanoparticles on titanium carbides as a superb catalyst for promoting hydrolysis of ammonia borane. Guo Z; Liu T; Wang Q; Gao G RSC Adv; 2018 Jan; 8(2):843-847. PubMed ID: 35538985 [TBL] [Abstract][Full Text] [Related]
28. Synthesis of PtRu nanoparticles from the hydrosilylation reaction and application as catalyst for direct methanol fuel cell. Huang J; Liu Z; He C; Gan LM J Phys Chem B; 2005 Sep; 109(35):16644-9. PubMed ID: 16853117 [TBL] [Abstract][Full Text] [Related]
29. In situ facile synthesis of Ru-based core-shell nanoparticles supported on carbon black and their high catalytic activity in the dehydrogenation of amine-boranes. Cao N; Su J; Hong X; Luo W; Cheng G Chem Asian J; 2014 Feb; 9(2):562-71. PubMed ID: 24288206 [TBL] [Abstract][Full Text] [Related]
30. In situ formed catalytically active ruthenium nanocatalyst in room temperature dehydrogenation/dehydrocoupling of ammonia-borane from Ru(cod)(cot) precatalyst. Zahmakiran M; Ayvalı T; Philippot K Langmuir; 2012 Mar; 28(11):4908-14. PubMed ID: 22356554 [TBL] [Abstract][Full Text] [Related]
31. Physical and electrochemical characterizations of microwave-assisted polyol preparation of carbon-supported PtRu nanoparticles. Liu Z; Lee JY; Chen W; Han M; Gan LM Langmuir; 2004 Jan; 20(1):181-7. PubMed ID: 15745018 [TBL] [Abstract][Full Text] [Related]
32. Catalytic methanolysis of hydrazine borane: a new and efficient hydrogen generation system under mild conditions. Karahan S; Zahmakıran M; Özkar S Dalton Trans; 2012 Apr; 41(16):4912-8. PubMed ID: 22451008 [TBL] [Abstract][Full Text] [Related]
33. Enhanced photocatalytic performance of auto-combusted nanoparticles for photocatalytic degradation of azo dye under sunlight illumination and hydrogen fuel production. Darabi R; Ghorbani-HasanSaraei A; Masoomzadeh S; Monadi Sefidan A; Gulbagca F; Elhouda Tiri RN; Zghair Al-Khafaji AH; Altuner EE; Sen F; Davarnia B; Mortazavi SM Chemosphere; 2023 Sep; 336():139266. PubMed ID: 37339707 [TBL] [Abstract][Full Text] [Related]
34. Nanostructured Ni2 P as a Robust Catalyst for the Hydrolytic Dehydrogenation of Ammonia-Borane. Peng CY; Kang L; Cao S; Chen Y; Lin ZS; Fu WF Angew Chem Int Ed Engl; 2015 Dec; 54(52):15725-9. PubMed ID: 26545954 [TBL] [Abstract][Full Text] [Related]
35. Palladium nanoparticles supported on cobalt(II,III) oxide nanocatalyst: High reusability and outstanding catalytic activity in hydrolytic dehydrogenation of ammonia borane. Akbayrak S; Özkar S J Colloid Interface Sci; 2022 Nov; 626():752-758. PubMed ID: 35820210 [TBL] [Abstract][Full Text] [Related]
36. Carbon supported Pd based catalysts for the hydrolytic dehydrogeneration of morpholine borane. Gulbay SK; Kaymaz M; Gulbagca F; Sen F Chemosphere; 2022 Dec; 309(Pt 1):136674. PubMed ID: 36195122 [TBL] [Abstract][Full Text] [Related]
37. Ruthenium(0) nanoparticles supported on xonotlite nanowire: a long-lived catalyst for hydrolytic dehydrogenation of ammonia-borane. Akbayrak S; Ozkar S Dalton Trans; 2014 Jan; 43(4):1797-805. PubMed ID: 24247216 [TBL] [Abstract][Full Text] [Related]
38. Highly Efficient Catalysts of Bimetallic Pt-Ru Nanocrystals Supported on Ordered ZrO Wang M; Chen D; Li N; Xu Q; Li H; He J; Lu J ACS Appl Mater Interfaces; 2020 Mar; 12(12):13781-13789. PubMed ID: 32093474 [TBL] [Abstract][Full Text] [Related]
39. PtRu/carbon nanotube nanocomposite synthesized in supercritical fluid: a novel electrocatalyst for direct methanol fuel cells. Lin Y; Cui X; Yen CH; Wai CM Langmuir; 2005 Nov; 21(24):11474-9. PubMed ID: 16285828 [TBL] [Abstract][Full Text] [Related]
40. Electrospun Bimetallic NiCr Nanoparticles@Carbon Nanofibers as an Efficient Catalyst for Hydrogen Generation from Ammonia Borane. M Brooks R; Maafa IM; M Al-Enizi A; M El-Halwany M; Ubaidullah M; Yousef A Nanomaterials (Basel); 2019 Jul; 9(8):. PubMed ID: 31357675 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]