BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 31673079)

  • 1. Co-expression of synaptic genes in the sponge Amphimedon queenslandica uncovers ancient neural submodules.
    Wong E; Mölter J; Anggono V; Degnan SM; Degnan BM
    Sci Rep; 2019 Oct; 9(1):15781. PubMed ID: 31673079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wnt and TGF-beta expression in the sponge Amphimedon queenslandica and the origin of metazoan embryonic patterning.
    Adamska M; Degnan SM; Green KM; Adamski M; Craigie A; Larroux C; Degnan BM
    PLoS One; 2007 Oct; 2(10):e1031. PubMed ID: 17925879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From traveler to homebody: Which signaling mechanisms sponge larvae use to become adult sponges?
    Borisenko I; Podgornaya OI; Ereskovsky AV
    Adv Protein Chem Struct Biol; 2019; 116():421-449. PubMed ID: 31036299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome profiling of the demosponge Amphimedon queenslandica reveals genome-wide events that accompany major life cycle transitions.
    Conaco C; Neveu P; Zhou H; Arcila ML; Degnan SM; Degnan BM; Kosik KS
    BMC Genomics; 2012 May; 13():209. PubMed ID: 22646746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A post-synaptic scaffold at the origin of the animal kingdom.
    Sakarya O; Armstrong KA; Adamska M; Adamski M; Wang IF; Tidor B; Degnan BM; Oakley TH; Kosik KS
    PLoS One; 2007 Jun; 2(6):e506. PubMed ID: 17551586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene activation of metazoan Fox transcription factors at the onset of metamorphosis in the marine demosponge Amphimedon queenslandica.
    Yuan H; Hatleberg WL; Degnan BM; Degnan SM
    Dev Growth Differ; 2022 Oct; 64(8):455-468. PubMed ID: 36155915
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The physiology and molecular biology of sponge tissues.
    Leys SP; Hill A
    Adv Mar Biol; 2012; 62():1-56. PubMed ID: 22664120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Think like a sponge: The genetic signal of sensory cells in sponges.
    Mah JL; Leys SP
    Dev Biol; 2017 Nov; 431(1):93-100. PubMed ID: 28647138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of Prokaryotic Genes in the Amphimedon queenslandica Genome.
    Conaco C; Tsoulfas P; Sakarya O; Dolan A; Werren J; Kosik KS
    PLoS One; 2016; 11(3):e0151092. PubMed ID: 26959231
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep developmental transcriptome sequencing uncovers numerous new genes and enhances gene annotation in the sponge Amphimedon queenslandica.
    Fernandez-Valverde SL; Calcino AD; Degnan BM
    BMC Genomics; 2015 May; 16(1):387. PubMed ID: 25975661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The genome of the sponge Amphimedon queenslandica provides new perspectives into the origin of Toll-like and interleukin 1 receptor pathways.
    Gauthier ME; Du Pasquier L; Degnan BM
    Evol Dev; 2010; 12(5):519-33. PubMed ID: 20883219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analyses of developmental transcription factor repertoires in sponges reveal unexpected complexity of the earliest animals.
    Fortunato SA; Adamski M; Adamska M
    Mar Genomics; 2015 Dec; 24 Pt 2():121-9. PubMed ID: 26253310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and expression of conserved Wnt pathway components in the demosponge Amphimedon queenslandica.
    Adamska M; Larroux C; Adamski M; Green K; Lovas E; Koop D; Richards GS; Zwafink C; Degnan BM
    Evol Dev; 2010; 12(5):494-518. PubMed ID: 20883218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary origin of gastrulation: insights from sponge development.
    Nakanishi N; Sogabe S; Degnan BM
    BMC Biol; 2014 Mar; 12():26. PubMed ID: 24678663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pluripotency and the origin of animal multicellularity.
    Sogabe S; Hatleberg WL; Kocot KM; Say TE; Stoupin D; Roper KE; Fernandez-Valverde SL; Degnan SM; Degnan BM
    Nature; 2019 Jun; 570(7762):519-522. PubMed ID: 31189954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensory Flask Cells in Sponge Larvae Regulate Metamorphosis via Calcium Signaling.
    Nakanishi N; Stoupin D; Degnan SM; Degnan BM
    Integr Comp Biol; 2015 Dec; 55(6):1018-27. PubMed ID: 25898842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The characterization of sponge NLRs provides insight into the origin and evolution of this innate immune gene family in animals.
    Yuen B; Bayes JM; Degnan SM
    Mol Biol Evol; 2014 Jan; 31(1):106-20. PubMed ID: 24092772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The analysis of eight transcriptomes from all poriferan classes reveals surprising genetic complexity in sponges.
    Riesgo A; Farrar N; Windsor PJ; Giribet G; Leys SP
    Mol Biol Evol; 2014 May; 31(5):1102-20. PubMed ID: 24497032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Amphimedon queenslandica genome and the evolution of animal complexity.
    Srivastava M; Simakov O; Chapman J; Fahey B; Gauthier ME; Mitros T; Richards GS; Conaco C; Dacre M; Hellsten U; Larroux C; Putnam NH; Stanke M; Adamska M; Darling A; Degnan SM; Oakley TH; Plachetzki DC; Zhai Y; Adamski M; Calcino A; Cummins SF; Goodstein DM; Harris C; Jackson DJ; Leys SP; Shu S; Woodcroft BJ; Vervoort M; Kosik KS; Manning G; Degnan BM; Rokhsar DS
    Nature; 2010 Aug; 466(7307):720-6. PubMed ID: 20686567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unbiased View of Synaptic and Neuronal Gene Complement in Ctenophores: Are There Pan-neuronal and Pan-synaptic Genes across Metazoa?
    Moroz LL; Kohn AB
    Integr Comp Biol; 2015 Dec; 55(6):1028-49. PubMed ID: 26454853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.