BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 31673288)

  • 21. Catalytic Transfer Hydrogenation and Acid Reactions of Furfural and 5-(Hydroxymethyl)furfural over Hf-TUD-1 Type Catalysts.
    Antunes MM; Silva AF; Bernardino CD; Fernandes A; Ribeiro F; Valente AA
    Molecules; 2021 Nov; 26(23):. PubMed ID: 34885785
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monosaccharides Dehydration Assisted by Formation of Borate Esters of α-Hydroxyacids in Choline Chloride-Based Low Melting Mixtures.
    Istasse T; Lemaur V; Debroux G; Bockstal L; Lazzaroni R; Richel A
    Front Chem; 2020; 8():569. PubMed ID: 32733851
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conversion of waste lignocellulose to furfural using sulfonated carbon microspheres as catalyst.
    Li X; Lu X; Liang M; Xu R; Yu Z; Duan B; Lu L; Si C
    Waste Manag; 2020 May; 108():119-126. PubMed ID: 32353776
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enzymatic conversion reactions of 5-hydroxymethylfurfural (HMF) to bio-based
    Cajnko MM; Novak U; Grilc M; Likozar B
    Biotechnol Biofuels; 2020; 13():66. PubMed ID: 32308735
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Towards efficient and greener processes for furfural production from biomass: A review of the recent trends.
    Cousin E; Namhaed K; Pérès Y; Cognet P; Delmas M; Hermansyah H; Gozan M; Alaba PA; Aroua MK
    Sci Total Environ; 2022 Nov; 847():157599. PubMed ID: 35901885
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydrothermal pentose to furfural conversion and simultaneous extraction with SC-CO2--kinetics and application to biomass hydrolysates.
    Gairola K; Smirnova I
    Bioresour Technol; 2012 Nov; 123():592-8. PubMed ID: 22947445
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 5-(Chloromethyl)Furfural as a Potential Source for Continuous Hydrogenation of 5-(Hydroxymethyl)Furfural to 2,5-Bis(Hydroxymethyl)Furan.
    Park D; Lee S; Kim J; Yeong Ryu G; Suh YW
    Chempluschem; 2022 Dec; 87(12):e202200166. PubMed ID: 35790089
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis of 5-(hydroxymethyl)furfural in ionic liquids: paving the way to renewable chemicals.
    Ståhlberg T; Fu W; Woodley JM; Riisager A
    ChemSusChem; 2011 Apr; 4(4):451-8. PubMed ID: 21275065
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Heterogeneous Catalytic Conversion of Sugars Into 2,5-Furandicarboxylic Acid.
    Deshan ADK; Atanda L; Moghaddam L; Rackemann DW; Beltramini J; Doherty WOS
    Front Chem; 2020; 8():659. PubMed ID: 32850671
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biotransformation of furfural and 5-hydroxymethyl furfural (HMF) by Clostridium acetobutylicum ATCC 824 during butanol fermentation.
    Zhang Y; Han B; Ezeji TC
    N Biotechnol; 2012 Feb; 29(3):345-51. PubMed ID: 21925629
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Formation of degradation compounds from lignocellulosic biomass in the biorefinery: sugar reaction mechanisms.
    Rasmussen H; Sørensen HR; Meyer AS
    Carbohydr Res; 2014 Feb; 385():45-57. PubMed ID: 24412507
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced Furfural Yields from Xylose Dehydration in the γ-Valerolactone/Water Solvent System at Elevated Temperatures.
    Sener C; Motagamwala AH; Alonso DM; Dumesic JA
    ChemSusChem; 2018 Jul; 11(14):2321-2331. PubMed ID: 29776010
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SAPO-34/5A Zeolite Bead Catalysts for Furan Production from Xylose and Glucose.
    Romo JE; Wu T; Huang X; Lucero J; Irwin JL; Bond JQ; Carreon MA; Wettstein SG
    ACS Omega; 2018 Nov; 3(11):16253-16259. PubMed ID: 31458261
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of glucose/xylose cofermentation of poplar hydrolysates processed by different pretreatment technologies.
    Lu Y; Warner R; Sedlak M; Ho N; Mosier NS
    Biotechnol Prog; 2009; 25(2):349-56. PubMed ID: 19319980
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular aspects of glucose dehydration by chromium chlorides in ionic liquids.
    Zhang Y; Pidko EA; Hensen EJ
    Chemistry; 2011 May; 17(19):5281-8. PubMed ID: 21488106
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of Crucial Intermediates in the Formation of Humins from Cellulose-Derived Platform Chemicals Under Brønsted Acid Catalyzed Reaction Conditions.
    Divya PS; Nair S; Kunnikuruvan S
    Chemphyschem; 2022 Jun; 23(11):e202200057. PubMed ID: 35285118
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimization of furfural and 5-hydroxymethylfurfural production from wheat straw by a microwave-assisted process.
    Yemiş O; Mazza G
    Bioresour Technol; 2012 Apr; 109():215-23. PubMed ID: 22297050
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Production of rare sugars from common sugars in subcritical aqueous ethanol.
    Gao DM; Kobayashi T; Adachi S
    Food Chem; 2015 May; 175():465-70. PubMed ID: 25577107
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional relationship of furfural yields and the hemicellulose-derived sugars in the hydrolysates from corncob by microwave-assisted hydrothermal pretreatment.
    Li H; Chen X; Ren J; Deng H; Peng F; Sun R
    Biotechnol Biofuels; 2015; 8():127. PubMed ID: 26312067
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Establishment of
    Baptista M; Cunha JT; Domingues L
    J Fungi (Basel); 2021 Dec; 7(12):. PubMed ID: 34947029
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.