BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 31673666)

  • 1. First-In-Human Phase 1 Study of a Nonwoven Fabric Bioabsorbable Spacer for Particle Therapy: Space-Making Particle Therapy (SMPT).
    Sasaki R; Demizu Y; Yamashita T; Komatsu S; Akasaka H; Miyawaki D; Yoshida K; Wang T; Okimoto T; Fukumoto T
    Adv Radiat Oncol; 2019; 4(4):729-737. PubMed ID: 31673666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preclinical evaluation of bioabsorbable polyglycolic acid spacer for particle therapy.
    Akasaka H; Sasaki R; Miyawaki D; Mukumoto N; Sulaiman NS; Nagata M; Yamada S; Murakami M; Demizu Y; Fukumoto T
    Int J Radiat Oncol Biol Phys; 2014 Dec; 90(5):1177-85. PubMed ID: 25539373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Space-Making Particle Therapy for Unresectable Hilar Cholangiocarcinoma.
    Hashimoto Y; Komatsu S; Terashima K; Tsugawa D; Yanagimoto H; Suga M; Demizu Y; Tokumaru S; Okimoto T; Sasaki R; Ajiki T; Fukumoto T
    Dig Surg; 2022; 39(2-3):99-108. PubMed ID: 35462363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three cases of retroperitoneal sarcoma in which bioabsorbable spacers (bioabsorbable polyglycolic acid spacers) were inserted prior to carbon ion radiotherapy.
    Serizawa I; Kusano Y; Kano K; Shima S; Tsuchida K; Takakusagi Y; Mizoguchi N; Kamada T; Yoshida D; Katoh H
    J Radiat Res; 2022 Mar; 63(2):296-302. PubMed ID: 35152291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Innovative Combination Treatment to Expand the Indications of Particle Therapy: Spacer Placement Surgery Using Bio-Absorbable Polyglycolic Acid Spacer.
    Komatsu S; Wang T; Terashima K; Demizu Y; Anzai M; Suga M; Yamashita T; Suzuki O; Okimoto T; Sasaki R; Fukumoto T
    J Am Coll Surg; 2024 Jan; 238(1):119-128. PubMed ID: 37737669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact on dose distribution and volume changes of a bioabsorbable polyglycolic acid spacer during chemo-proton therapy for a pediatric Ewing sarcoma.
    Kimura M; Asai K; Iwata H; Ogino H; Ito Y; Kamei M; Takagi D; Maeda N; Shibamoto Y
    J Radiat Res; 2020 Nov; 61(6):952-958. PubMed ID: 32960269
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualizing Bioabsorbable Spacer Effectiveness by Confirming the Distal-Tail of Carbon-Ion Beams: First-In-Human Report.
    Shiba S; Okamoto M; Sakai M; Ohno T
    Tomography; 2022 Sep; 8(5):2339-2346. PubMed ID: 36287794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical impact of spacer placement surgery with expanded polytetrafluoroethylene sheet for particle therapy.
    Fujinaka R; Komatsu S; Terashima K; Demizu Y; Omiya S; Kido M; Toyama H; Tokumaru S; Okimoto T; Fukumoto T
    Radiat Oncol; 2023 Oct; 18(1):173. PubMed ID: 37875956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Space-making particle therapy for sarcomas derived from the abdominopelvic region.
    Komatsu S; Demizu Y; Sulaiman NS; Terashima K; Suga M; Kido M; Toyama H; Tokumaru S; Okimoto T; Sasaki R; Fukumoto T
    Radiother Oncol; 2020 May; 146():194-199. PubMed ID: 32220700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Space-Making Particle Therapy with Surgical Spacer Placement in Patients with Sacral Chordoma.
    Tsugawa D; Komatsu S; Demizu Y; Sulaiman NS; Suga M; Kido M; Toyama H; Okimoto T; Sasaki R; Fukumoto T
    J Am Coll Surg; 2020 Feb; 230(2):207-215. PubMed ID: 31765694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transitional changes of spacer materials used in carbon-ion radiation therapy.
    Yamamoto Y; Hino A; Kurihara H; Kano K; Serizawa I; Katoh H; Hiruma T
    Asia Pac J Clin Oncol; 2022 Oct; 18(5):e442-e447. PubMed ID: 35098680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preoperative hyperfractionated chemoradiation for locally recurrent rectal cancer in patients previously irradiated to the pelvis: A multicentric phase II study.
    Valentini V; Morganti AG; Gambacorta MA; Mohiuddin M; Doglietto GB; Coco C; De Paoli A; Rossi C; Di Russo A; Valvo F; Bolzicco G; Dalla Palma M;
    Int J Radiat Oncol Biol Phys; 2006 Mar; 64(4):1129-39. PubMed ID: 16414206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In silico comparison of the dosimetric impacts of a greater omentum spacer for abdominal and pelvic tumors in carbon-ion, proton and photon radiotherapy.
    Yamada M; Sato H; Ieko Y; Miyasaka Y; Kanai T; Yano N; Ono T; Akamatsu H; Harada M; Ichikawa M; Teranishi Y; Kikuchi Y; Nemoto K
    Radiat Oncol; 2019 Nov; 14(1):207. PubMed ID: 31752932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogel Spacer Prospective Multicenter Randomized Controlled Pivotal Trial: Dosimetric and Clinical Effects of Perirectal Spacer Application in Men Undergoing Prostate Image Guided Intensity Modulated Radiation Therapy.
    Mariados N; Sylvester J; Shah D; Karsh L; Hudes R; Beyer D; Kurtzman S; Bogart J; Hsi RA; Kos M; Ellis R; Logsdon M; Zimberg S; Forsythe K; Zhang H; Soffen E; Francke P; Mantz C; Rossi P; DeWeese T; Hamstra DA; Bosch W; Gay H; Michalski J
    Int J Radiat Oncol Biol Phys; 2015 Aug; 92(5):971-977. PubMed ID: 26054865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dose Prediction Model for Duodenum Sparing With a Biodegradable Hydrogel Spacer for Pancreatic Cancer Radiation Therapy.
    Feng Z; Rao AD; Cheng Z; Shin EJ; Moore J; Su L; Kim SH; Wong J; Narang A; Herman JM; McNutt T; Li D; Ding K
    Int J Radiat Oncol Biol Phys; 2018 Nov; 102(3):651-659. PubMed ID: 30031143
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surgical spacer placement for proton radiotherapy in locally advanced pancreatic body and tail cancers: initial clinical results.
    Lee D; Komatsu S; Terashima K; Toyama H; Matsuo Y; Takahashi D; Suga M; Nishimura N; Tai K; Kido M; Demizu Y; Tokumaru S; Okimoto T; Sasaki R; Fukumoto T
    Radiat Oncol; 2021 Jan; 16(1):3. PubMed ID: 33407648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rectal dose-sparing effect with bioabsorbable spacer placement in carbon ion radiotherapy for sacral chordoma: dosimetric comparison of a simulation study.
    Shiba S; Okamoto M; Tashiro M; Ogawa H; Osone K; Yanagawa T; Kohama I; Okazaki S; Miyasaka Y; Osu N; Chikuda H; Saeki H; Ohno T
    J Radiat Res; 2021 May; 62(3):549-555. PubMed ID: 33783533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Initial Report of a Prospective Dosimetric and Clinical Feasibility Trial Demonstrates the Potential of Protons to Increase the Therapeutic Ratio in Breast Cancer Compared With Photons.
    Bradley JA; Dagan R; Ho MW; Rutenberg M; Morris CG; Li Z; Mendenhall NP
    Int J Radiat Oncol Biol Phys; 2016 May; 95(1):411-421. PubMed ID: 26611875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Chronic radiation-induced rectal injury after adjuvant radiotherapy for pelvic malignant tumors: report based on a phase 3 randomized clinical trial].
    Zhou Y; Huang H; Wan T; Feng YL; Liu JH
    Zhonghua Wei Chang Wai Ke Za Zhi; 2021 Nov; 24(11):962-968. PubMed ID: 34823296
    [No Abstract]   [Full Text] [Related]  

  • 20. Trend analysis of the dosimetric impact of anatomical changes during proton therapy for maxillary sinus carcinoma.
    Narita Y; Kato T; Ono T; Oyama S; Yamazaki Y; Ouchi H; Takemasa K; Murakami M
    J Appl Clin Med Phys; 2021 Sep; 22(9):298-306. PubMed ID: 34402579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.