These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 31673804)
1. Molecular characterization of hypothetical scaffolding-like protein S1 in multienzyme complex produced by Paenibacillus curdlanolyticus B-6. Pason P; Sermsathanaswadi J; Waeonukul R; Tachaapaikoon C; Baramee S; Ratanakhanokchai K; Kosugi A AMB Express; 2019 Oct; 9(1):171. PubMed ID: 31673804 [TBL] [Abstract][Full Text] [Related]
2. Purification and characterization of a multienzyme complex produced by Paenibacillus curdlanolyticus B-6. Pason P; Kosugi A; Waeonukul R; Tachaapaikoon C; Ratanakhanokchai K; Arai T; Murata Y; Nakajima J; Mori Y Appl Microbiol Biotechnol; 2010 Jan; 85(3):573-80. PubMed ID: 19597812 [TBL] [Abstract][Full Text] [Related]
3. The family 22 carbohydrate-binding module of bifunctional xylanase/β-glucanase Xyn10E from Paenibacillus curdlanolyticus B-6 has an important role in lignocellulose degradation. Sermsathanaswadi J; Baramee S; Tachaapaikoon C; Pason P; Ratanakhanokchai K; Kosugi A Enzyme Microb Technol; 2017 Jan; 96():75-84. PubMed ID: 27871388 [TBL] [Abstract][Full Text] [Related]
4. Cloning, sequencing, and expression of the gene encoding a multidomain endo-beta-1,4-xylanase from Paenibacillus curdlanolyticus B-6, and characterization of the recombinant enzyme. Waeonukul R; Pason P; Kyu KL; Sakka K; Kosugi A; Mori Y; Ratanakhanokchai K J Microbiol Biotechnol; 2009 Mar; 19(3):277-85. PubMed ID: 19349753 [TBL] [Abstract][Full Text] [Related]
5. The C-terminal region of xylanase domain in Xyn11A from Paenibacillus curdlanolyticus B-6 plays an important role in structural stability. Sermsathanaswadi J; Pianwanit S; Pason P; Waeonukul R; Tachaapaikoon C; Ratanakhanokchai K; Septiningrum K; Kosugi A Appl Microbiol Biotechnol; 2014 Oct; 98(19):8223-33. PubMed ID: 24788327 [TBL] [Abstract][Full Text] [Related]
6. Isolation and characterization of a multienzyme complex (cellulosome) of the Paenibacillus curdlanolyticus B-6 grown on Avicel under aerobic conditions. Waeonukul R; Kyu KL; Sakka K; Ratanakhanokchai K J Biosci Bioeng; 2009 Jun; 107(6):610-4. PubMed ID: 19447336 [TBL] [Abstract][Full Text] [Related]
7. A novel AA10 from Paenibacillus curdlanolyticus and its synergistic action on crystalline and complex polysaccharides. Limsakul P; Phitsuwan P; Waeonukul R; Pason P; Tachaapaikoon C; Poomputsa K; Kosugi A; Sakka M; Sakka K; Ratanakhanokchai K Appl Microbiol Biotechnol; 2020 Sep; 104(17):7533-7550. PubMed ID: 32651597 [TBL] [Abstract][Full Text] [Related]
9. A modular cinnamoyl ester hydrolase from the anaerobic fungus Piromyces equi acts synergistically with xylanase and is part of a multiprotein cellulose-binding cellulase-hemicellulase complex. Fillingham IJ; Kroon PA; Williamson G; Gilbert HJ; Hazlewood GP Biochem J; 1999 Oct; 343 Pt 1(Pt 1):215-24. PubMed ID: 10493932 [TBL] [Abstract][Full Text] [Related]
10. Paenibacillus curdlanolyticus strain B-6 xylanolytic-cellulolytic enzyme system that degrades insoluble polysaccharides. Pason P; Kyu KL; Ratanakhanokchai K Appl Environ Microbiol; 2006 Apr; 72(4):2483-90. PubMed ID: 16597947 [TBL] [Abstract][Full Text] [Related]
11. Expression of the Thermobifida fusca xylanase Xyn11A in Pichia pastoris and its characterization. Zhao L; Geng J; Guo Y; Liao X; Liu X; Wu R; Zheng Z; Zhang R BMC Biotechnol; 2015 Mar; 15():18. PubMed ID: 25887328 [TBL] [Abstract][Full Text] [Related]
12. A novel multifunctional GH9 enzyme from Paenibacillus curdlanolyticus B-6 exhibiting endo/exo functions of cellulase, mannanase and xylanase activities. Phakeenuya V; Ratanakhanokchai K; Kosugi A; Tachaapaikoon C Appl Microbiol Biotechnol; 2020 Mar; 104(5):2079-2096. PubMed ID: 31980921 [TBL] [Abstract][Full Text] [Related]
13. Homologous xylanases from Clostridium thermocellum: evidence for bi-functional activity, synergism between xylanase catalytic modules and the presence of xylan-binding domains in enzyme complexes. Fernandes AC; Fontes CM; Gilbert HJ; Hazlewood GP; Fernandes TH; Ferreira LM Biochem J; 1999 Aug; 342 ( Pt 1)(Pt 1):105-10. PubMed ID: 10432306 [TBL] [Abstract][Full Text] [Related]
14. Evidence for synergy between family 2b carbohydrate binding modules in Cellulomonas fimi xylanase 11A. Bolam DN; Xie H; White P; Simpson PJ; Hancock SM; Williamson MP; Gilbert HJ Biochemistry; 2001 Feb; 40(8):2468-77. PubMed ID: 11327868 [TBL] [Abstract][Full Text] [Related]
15. The Clostridium cellulovorans cellulosome: an enzyme complex with plant cell wall degrading activity. Doi RH; Tamaru Y Chem Rec; 2001; 1(1):24-32. PubMed ID: 11893054 [TBL] [Abstract][Full Text] [Related]
17. An β-1,4-xylanase with exo-enzyme activity produced by Paenibacillus xylanilyticus KJ-03 and its cloning and characterization. Park DJ; Lee YS; Chang J; Fang SJ; Choi YL J Microbiol Biotechnol; 2013 Mar; 23(3):397-404. PubMed ID: 23462014 [TBL] [Abstract][Full Text] [Related]
18. Effect of carbon sources on the induction of xylanolytic-cellulolytic multienzyme complexes in Paenibacillus curdlanolyticus strain B-6. Waeonukul R; Kyu KL; Sakka K; Ratanakhanokchai K Biosci Biotechnol Biochem; 2008 Feb; 72(2):321-8. PubMed ID: 18256505 [TBL] [Abstract][Full Text] [Related]
19. GH10 XynA is the main xylanase identified in the crude enzymatic extract of Paenibacillus sp. A59 when grown on xylan or lignocellulosic biomass. Ghio S; Insani EM; Piccinni FE; Talia PM; Grasso DH; Campos E Microbiol Res; 2016; 186-187():16-26. PubMed ID: 27242139 [TBL] [Abstract][Full Text] [Related]
20. Characterization of a Paenibacillus cell-associated xylanase with high activity on aryl-xylosides: a new subclass of family 10 xylanases. Gallardo O; Diaz P; Pastor FI Appl Microbiol Biotechnol; 2003 May; 61(3):226-33. PubMed ID: 12698280 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]