These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 31673852)

  • 1. Production of 5-aminolevulinic acid from glutamate by overexpressing HemA1 and pgr7 from Arabidopsis thaliana in Escherichia coli.
    Aiguo Z; Meizhi Z
    World J Microbiol Biotechnol; 2019 Oct; 35(11):175. PubMed ID: 31673852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of glutamyl-tRNA reductase in Escherichia coli.
    Chen W; Wright L; Li S; Cosloy SD; Russell CS
    Biochim Biophys Acta; 1996 Nov; 1309(1-2):109-21. PubMed ID: 8950186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification, regulation and production of 5-aminolevulinic acid by green fluorescent protein in recombinant Escherichia coli.
    Tan SI; You SC; Shih IT; Ng IS
    J Biosci Bioeng; 2020 Apr; 129(4):387-394. PubMed ID: 31678067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 5-Aminolevulinic acid production in engineered Corynebacterium glutamicum via C5 biosynthesis pathway.
    Ramzi AB; Hyeon JE; Kim SW; Park C; Han SO
    Enzyme Microb Technol; 2015 Dec; 81():1-7. PubMed ID: 26453466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering Escherichia coli for efficient production of 5-aminolevulinic acid from glucose.
    Kang Z; Wang Y; Gu P; Wang Q; Qi Q
    Metab Eng; 2011 Sep; 13(5):492-8. PubMed ID: 21620993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of medium composition on production of 5-aminolevulinic acid by recombinant Escherichia coli.
    Qin G; Lin J; Liu X; Cen P
    J Biosci Bioeng; 2006 Oct; 102(4):316-22. PubMed ID: 17116578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Arabidopsis GluTR binding protein mediates spatial separation of 5-aminolevulinic acid synthesis in chloroplasts.
    Czarnecki O; Hedtke B; Melzer M; Rothbart M; Richter A; Schröter Y; Pfannschmidt T; Grimm B
    Plant Cell; 2011 Dec; 23(12):4476-91. PubMed ID: 22180625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of HEMA1 expression by phytochrome and a plastid signal during de-etiolation in Arabidopsis thaliana.
    McCormac AC; Fischer A; Kumar AM; Söll D; Terry MJ
    Plant J; 2001 Mar; 25(5):549-61. PubMed ID: 11309145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A second and differentially expressed glutamyl-tRNA reductase gene from Arabidopsis thaliana.
    Kumar AM; Csankovszki G; Söll D
    Plant Mol Biol; 1996 Feb; 30(3):419-26. PubMed ID: 8605295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stable and Efficient Biosynthesis of 5-Aminolevulinic Acid Using Plasmid-Free Escherichia coli.
    Cui Z; Jiang Z; Zhang J; Zheng H; Jiang X; Gong K; Liang Q; Wang Q; Qi Q
    J Agric Food Chem; 2019 Feb; 67(5):1478-1483. PubMed ID: 30644739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GluTR2 complements a hema1 mutant lacking glutamyl-tRNA reductase 1, but is differently regulated at the post-translational level.
    Apitz J; Schmied J; Lehmann MJ; Hedtke B; Grimm B
    Plant Cell Physiol; 2014 Mar; 55(3):645-57. PubMed ID: 24449654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light regulation of chlorophyll biosynthesis at the level of 5-aminolevulinate formation in Arabidopsis.
    Ilag LL; Kumar AM; Söll D
    Plant Cell; 1994 Feb; 6(2):265-75. PubMed ID: 7908550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective inhibition of HEMA gene expression by photooxidation in Arabidopsis thaliana.
    Kumar MA; Chaturvedi S; Söll D
    Phytochemistry; 1999 Aug; 51(7):847-51. PubMed ID: 10423858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Corynebacterium glutamicum to produce 5-aminolevulinic acid from glucose.
    Yu X; Jin H; Liu W; Wang Q; Qi Q
    Microb Cell Fact; 2015 Nov; 14():183. PubMed ID: 26577071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Chlamydomonas reinhardtii gtr gene encoding the tetrapyrrole biosynthetic enzyme glutamyl-trna reductase: structure of the gene and properties of the expressed enzyme.
    Srivastava A; Lake V; Nogaj LA; Mayer SM; Willows RD; Beale SI
    Plant Mol Biol; 2005 Jul; 58(5):643-58. PubMed ID: 16158240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering Escherichia coli for efficient coproduction of polyhydroxyalkanoates and 5-aminolevulinic acid.
    Zhang X; Zhang J; Xu J; Zhao Q; Wang Q; Qi Q
    J Ind Microbiol Biotechnol; 2018 Jan; 45(1):43-51. PubMed ID: 29264661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the hemA gene product and delta-aminolevulinic acid in regulation of Escherichia coli heme synthesis.
    Verderber E; Lucast LJ; Van Dehy JA; Cozart P; Etter JB; Best EA
    J Bacteriol; 1997 Jul; 179(14):4583-90. PubMed ID: 9226269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Divergent regulation of the HEMA gene family encoding glutamyl-tRNA reductase in Arabidopsis thaliana: expression of HEMA2 is regulated by sugars, but is independent of light and plastid signalling.
    Ujwal ML; McCormac AC; Goulding A; Kumar AM; Söll D; Terry MJ
    Plant Mol Biol; 2002 Sep; 50(1):83-91. PubMed ID: 12139011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 5-Aminolevulinic acid production from inexpensive glucose by engineering the C4 pathway in Escherichia coli.
    Ding W; Weng H; Du G; Chen J; Kang Z
    J Ind Microbiol Biotechnol; 2017 Aug; 44(8):1127-1135. PubMed ID: 28382525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of DR1558, a Deinococcus radiodurans response regulator, on the production of GABA in the recombinant Escherichia coli under low pH conditions.
    Park SH; Sohn YJ; Park SJ; Choi JI
    Microb Cell Fact; 2020 Mar; 19(1):64. PubMed ID: 32156293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.