BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 31673874)

  • 1. Shortening heparan sulfate chains prolongs survival and reduces parenchymal plaques in prion disease caused by mobile, ADAM10-cleaved prions.
    Aguilar-Calvo P; Sevillano AM; Bapat J; Soldau K; Sandoval DR; Altmeppen HC; Linsenmeier L; Pizzo DP; Geschwind MD; Sanchez H; Appleby BS; Cohen ML; Safar JG; Edland SD; Glatzel M; Nilsson KPR; Esko JD; Sigurdson CJ
    Acta Neuropathol; 2020 Mar; 139(3):527-546. PubMed ID: 31673874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronal Ndst1 depletion accelerates prion protein clearance and slows neurodegeneration in prion infection.
    Aguilar-Calvo P; Malik A; Sandoval DR; Barback C; Orrù CD; Standke HG; Thomas OR; Dwyer CA; Pizzo DP; Bapat J; Soldau K; Ogawa R; Riley MB; Nilsson KPR; Kraus A; Caughey B; Iliff JJ; Vera DR; Esko JD; Sigurdson CJ
    PLoS Pathog; 2023 Sep; 19(9):e1011487. PubMed ID: 37747931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prion protein glycans reduce intracerebral fibril formation and spongiosis in prion disease.
    Sevillano AM; Aguilar-Calvo P; Kurt TD; Lawrence JA; Soldau K; Nam TH; Schumann T; Pizzo DP; Nyström S; Choudhury B; Altmeppen H; Esko JD; Glatzel M; Nilsson KPR; Sigurdson CJ
    J Clin Invest; 2020 Mar; 130(3):1350-1362. PubMed ID: 31985492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced neuroinvasion by smaller, soluble prions.
    Bett C; Lawrence J; Kurt TD; Orru C; Aguilar-Calvo P; Kincaid AE; Surewicz WK; Caughey B; Wu C; Sigurdson CJ
    Acta Neuropathol Commun; 2017 Apr; 5(1):32. PubMed ID: 28431576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prion protein post-translational modifications modulate heparan sulfate binding and limit aggregate size in prion disease.
    Callender JA; Sevillano AM; Soldau K; Kurt TD; Schumann T; Pizzo DP; Altmeppen H; Glatzel M; Esko JD; Sigurdson CJ
    Neurobiol Dis; 2020 Aug; 142():104955. PubMed ID: 32454127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycosaminoglycan sulphation affects the seeded misfolding of a mutant prion protein.
    Lawson VA; Lumicisi B; Welton J; Machalek D; Gouramanis K; Klemm HM; Stewart JD; Masters CL; Hoke DE; Collins SJ; Hill AF
    PLoS One; 2010 Aug; 5(8):e12351. PubMed ID: 20808809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heparan sulfate is a cellular receptor for purified infectious prions.
    Horonchik L; Tzaban S; Ben-Zaken O; Yedidia Y; Rouvinski A; Papy-Garcia D; Barritault D; Vlodavsky I; Taraboulos A
    J Biol Chem; 2005 Apr; 280(17):17062-7. PubMed ID: 15668247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of novel neuroinvasive prions following intravenous challenge.
    Aguilar-Calvo P; Bett C; Sevillano AM; Kurt TD; Lawrence J; Soldau K; Hammarström P; Nilsson KPR; Sigurdson CJ
    Brain Pathol; 2018 Nov; 28(6):999-1011. PubMed ID: 29505163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfated glycosaminoglycans mediate prion-like behavior of p53 aggregates.
    Iwahashi N; Ikezaki M; Nishikawa T; Namba N; Ohgita T; Saito H; Ihara Y; Shimanouchi T; Ino K; Uchimura K; Nishitsuji K
    Proc Natl Acad Sci U S A; 2020 Dec; 117(52):33225-33234. PubMed ID: 33318190
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PrP aggregation can be seeded by pre-formed recombinant PrP amyloid fibrils without the replication of infectious prions.
    Barron RM; King D; Jeffrey M; McGovern G; Agarwal S; Gill AC; Piccardo P
    Acta Neuropathol; 2016 Oct; 132(4):611-24. PubMed ID: 27376534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defining the conformational features of anchorless, poorly neuroinvasive prions.
    Bett C; Kurt TD; Lucero M; Trejo M; Rozemuller AJ; Kong Q; Nilsson KP; Masliah E; Oldstone MB; Sigurdson CJ
    PLoS Pathog; 2013; 9(4):e1003280. PubMed ID: 23637596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anchorless risk or released benefit? An updated view on the ADAM10-mediated shedding of the prion protein.
    Mohammadi B; Song F; Matamoros-Angles A; Shafiq M; Damme M; Puig B; Glatzel M; Altmeppen HC
    Cell Tissue Res; 2023 Apr; 392(1):215-234. PubMed ID: 35084572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absence of spontaneous disease and comparative prion susceptibility of transgenic mice expressing mutant human prion proteins.
    Asante EA; Gowland I; Grimshaw A; Linehan JM; Smidak M; Houghton R; Osiguwa O; Tomlinson A; Joiner S; Brandner S; Wadsworth JDF; Collinge J
    J Gen Virol; 2009 Mar; 90(Pt 3):546-558. PubMed ID: 19218199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anchorless prion protein results in infectious amyloid disease without clinical scrapie.
    Chesebro B; Trifilo M; Race R; Meade-White K; Teng C; LaCasse R; Raymond L; Favara C; Baron G; Priola S; Caughey B; Masliah E; Oldstone M
    Science; 2005 Jun; 308(5727):1435-9. PubMed ID: 15933194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Type I interferon protects neurons from prions in in vivo models.
    Ishibashi D; Homma T; Nakagaki T; Fuse T; Sano K; Satoh K; Mori T; Atarashi R; Nishida N
    Brain; 2019 Apr; 142(4):1035-1050. PubMed ID: 30753318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular basis of cerebral neurodegeneration in prion diseases.
    Tatzelt J; Schätzl HM
    FEBS J; 2007 Feb; 274(3):606-11. PubMed ID: 17288549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of seedable Amyloid-β peptides in model of prion diseases upon PrP
    Ezpeleta J; Baudouin V; Arellano-Anaya ZE; Boudet-Devaud F; Pietri M; Baudry A; Haeberlé AM; Bailly Y; Kellermann O; Launay JM; Schneider B
    Nat Commun; 2019 Aug; 10(1):3442. PubMed ID: 31371707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper-dependent co-internalization of the prion protein and glypican-1.
    Cheng F; Lindqvist J; Haigh CL; Brown DR; Mani K
    J Neurochem; 2006 Sep; 98(5):1445-57. PubMed ID: 16923158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prion, amyloid beta-derived Cu(II) ions, or free Zn(II) ions support S-nitroso-dependent autocleavage of glypican-1 heparan sulfate.
    Mani K; Cheng F; Havsmark B; Jönsson M; Belting M; Fransson LA
    J Biol Chem; 2003 Oct; 278(40):38956-65. PubMed ID: 12732622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular cross talk between misfolded proteins in animal models of Alzheimer's and prion diseases.
    Morales R; Estrada LD; Diaz-Espinoza R; Morales-Scheihing D; Jara MC; Castilla J; Soto C
    J Neurosci; 2010 Mar; 30(13):4528-35. PubMed ID: 20357103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.