These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 31674362)
1. Fano resonances in symmetric plasmonic split-ring/ring dimer nanostructures. Wang J; Yang L; Wang F; Liu C; Xu C; Liu Q; Liu W; Li X; Sun T; Chu PK Appl Opt; 2019 Oct; 58(29):8069-8074. PubMed ID: 31674362 [TBL] [Abstract][Full Text] [Related]
2. Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures. Fu YH; Zhang JB; Yu YF; Luk'yanchuk B ACS Nano; 2012 Jun; 6(6):5130-7. PubMed ID: 22577794 [TBL] [Abstract][Full Text] [Related]
3. Multiple Fano resonances in plasmonic heptamer clusters composed of split nanorings. Liu SD; Yang Z; Liu RP; Li XY ACS Nano; 2012 Jul; 6(7):6260-71. PubMed ID: 22680404 [TBL] [Abstract][Full Text] [Related]
4. Tunable Multipolar Fano Resonances and Electric Field Enhancements in Au Ring-Disk Plasmonic Nanostructures. Qiu R; Lin H; Huang J; Liang C; Yi Z Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30200419 [TBL] [Abstract][Full Text] [Related]
5. Polarization-Independent Multiple Fano Resonances in Plasmonic Nonamers for Multimode-Matching Enhanced Multiband Second-Harmonic Generation. Liu SD; Leong ES; Li GC; Hou Y; Deng J; Teng JH; Ong HC; Lei DY ACS Nano; 2016 Jan; 10(1):1442-53. PubMed ID: 26727133 [TBL] [Abstract][Full Text] [Related]
6. Fano resonances in disk-ring plasmonic nanostructure: strong interaction between bright dipolar and dark multipolar mode. Zhang Y; Jia TQ; Zhang HM; Xu ZZ Opt Lett; 2012 Dec; 37(23):4919-21. PubMed ID: 23202090 [TBL] [Abstract][Full Text] [Related]
7. Plasmonic Spectral Splitting in Ring/Rod Metasurface. Muhammad N; Khan AD; Deng ZL; Khan K; Yadav A; Liu Q; Ouyang Z Nanomaterials (Basel); 2017 Nov; 7(11):. PubMed ID: 29156591 [TBL] [Abstract][Full Text] [Related]
8. Magnetic plasmonic Fano resonance at optical frequency. Bao Y; Hu Z; Li Z; Zhu X; Fang Z Small; 2015 May; 11(18):2177-81. PubMed ID: 25594885 [TBL] [Abstract][Full Text] [Related]
9. Plasmon resonance hybridization in self-assembled copper nanoparticle clusters: efficient and precise localization of surface plasmon resonance (LSPR) sensing based on Fano resonances. Ahmadivand A; Pala N Appl Spectrosc; 2015; 69(2):277-86. PubMed ID: 25587712 [TBL] [Abstract][Full Text] [Related]
10. Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity. Wang J; Fan C; He J; Ding P; Liang E; Xue Q Opt Express; 2013 Jan; 21(2):2236-44. PubMed ID: 23389204 [TBL] [Abstract][Full Text] [Related]
11. Origin of plasmonic Fano resonance in metal-hole/split-ring-resonator metamaterials disclosed by temporal coupled-mode theory. Deng Q; Lin H; Li ZY Opt Express; 2023 Sep; 31(20):32322-32334. PubMed ID: 37859038 [TBL] [Abstract][Full Text] [Related]
12. Graphene Multiple Fano Resonances Based on Asymmetric Hybrid Metamaterial. Yan Z; Zhang Z; Du W; Wu W; Hu T; Yu Z; Gu P; Chen J; Tang C Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33276469 [TBL] [Abstract][Full Text] [Related]
13. Optical nanoantenna with muitiple surface plasmon resonances for enhancements in near-field intensity and far-field radiation. Liu S; Ju P; Lv L; Tang P; Wang H; Zhong L; Lu X Opt Express; 2021 Oct; 29(22):35678-35690. PubMed ID: 34808997 [TBL] [Abstract][Full Text] [Related]
14. Strongly coupled evenly divided disks: a new compact and tunable platform for plasmonic Fano resonances. Zhang S; Zhu X; Xiao W; Shi H; Wang Y; Chen Z; Chen Y; Sun K; Muskens OL; De Groot CH; Liu SD; Duan H Nanotechnology; 2020 Aug; 31(32):325202. PubMed ID: 32340011 [TBL] [Abstract][Full Text] [Related]
15. Nanoring structure, spacing, and local dielectric sensitivity for plasmonic resonances in Fano resonant square lattices. Forcherio GT; Blake P; DeJarnette D; Roper DK Opt Express; 2014 Jul; 22(15):17791-803. PubMed ID: 25089400 [TBL] [Abstract][Full Text] [Related]
16. Plasmonic Fano resonances in nanohole quadrumers for ultra-sensitive refractive index sensing. Zhan Y; Lei DY; Li X; Maier SA Nanoscale; 2014 May; 6(9):4705-15. PubMed ID: 24658052 [TBL] [Abstract][Full Text] [Related]
17. Highly controllable double Fano resonances in plasmonic metasurfaces. Liu Z; Ye J Nanoscale; 2016 Oct; 8(40):17665-17674. PubMed ID: 27714114 [TBL] [Abstract][Full Text] [Related]
18. Switching plasmonic Fano resonance in gold nanosphere-nanoplate heterodimers. Lu W; Cui X; Chow TH; Shao L; Wang H; Chen H; Wang J Nanoscale; 2019 May; 11(19):9641-9653. PubMed ID: 31065663 [TBL] [Abstract][Full Text] [Related]
19. Multiple Fano resonances with flexible tunablity based on symmetry-breaking resonators. Ren XB; Ren K; Zhang Y; Ming CG; Han Q Beilstein J Nanotechnol; 2019; 10():2459-2467. PubMed ID: 31921524 [TBL] [Abstract][Full Text] [Related]
20. Fano resonances in THz metamaterials composed of continuous metallic wires and split ring resonators. Li Z; Cakmakyapan S; Butun B; Daskalaki C; Tzortzakis S; Yang X; Ozbay E Opt Express; 2014 Nov; 22(22):26572-84. PubMed ID: 25401808 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]