These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 31674375)

  • 1. Simulation of heat transfer in the progress of precision glass molding with a finite element method for chalcogenide glass.
    Liu Y; Xing Y; Yang C; Li C; Xue C
    Appl Opt; 2019 Sep; 58(27):7311-7318. PubMed ID: 31674375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deformation Analysis of the Glass Preform in the Progress of Precision Glass Molding for Fabricating Chalcogenide Glass Diffractive Optics with the Finite Element Method.
    Liu Y; Xing Y; Fu H; Li C; Yang C; Cao B; Xue C
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of thermoforming mechanism and optical properties' change of chalcogenide glass in precision glass molding.
    Zhang L; Zhou W; Yi AY
    Appl Opt; 2018 Aug; 57(22):6358-6368. PubMed ID: 30117863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Elastic Modulus on the Accuracy of the Finite Element Method in Simulating Precision Glass Molding.
    Yao H; Lv K; Zhang J; Wang H; Xie X; Zhu X; Deng J; Zhuo S
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31752215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of lens fracture in precision glass molding with the finite element method.
    Liu Y; Xing Y; Li C; Yang C; Xue C
    Appl Opt; 2021 Sep; 60(26):8022-8030. PubMed ID: 34613063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical optimization platform for precision glass molding by the simplex algorithm.
    Liu W; Zhang L
    Appl Opt; 2017 Apr; 56(12):3245-3250. PubMed ID: 28430244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction model of residual stress during precision glass molding of optical lenses.
    Fu H; Xue C; Liu Y; Cao B; Lang C; Yang C
    Appl Opt; 2022 Feb; 61(5):1194-1202. PubMed ID: 35201172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of index change in compression molding of As
    Zhang L; Zhou W; Naples NJ; Yi AY
    Appl Opt; 2018 May; 57(15):4245-4252. PubMed ID: 29791401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of the Refractive Index Variation and Validation of the Form Deviation in Precisely Molded Chalcogenide Glass Lenses (IRG 26) Considering the Stress and Structure Relaxation.
    Jiang C; Tovar CM; Staasmeyer JH; Friedrichs M; Grunwald T; Bergs T
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36234096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Review of the Precision Glass Molding of Chalcogenide Glass (ChG) for Infrared Optics.
    Zhou T; Zhu Z; Liu X; Liang Z; Wang X
    Micromachines (Basel); 2018 Jul; 9(7):. PubMed ID: 30424270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface defect analysis on formed chalcogenide glass Ge
    Zhou T; Zhou Q; Xie J; Liu X; Wang X; Ruan H
    Appl Opt; 2017 Oct; 56(30):8394-8402. PubMed ID: 29091618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of interface thermal resistance on surface morphology evolution in precision glass molding for microlens array.
    Xie J; Zhou T; Ruan B; Du Y; Wang X
    Appl Opt; 2017 Aug; 56(23):6622-6630. PubMed ID: 29047954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The nonsteady state modeling of freeze drying: in-process product temperature and moisture content mapping and pharmaceutical product quality applications.
    Pikal MJ; Cardon S; Bhugra C; Jameel F; Rambhatla S; Mascarenhas WJ; Akay HU
    Pharm Dev Technol; 2005; 10(1):17-32. PubMed ID: 15776810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Interface Thermal Resistance Evolution between Carbide-Bonded Graphene Coating and Polymer in Rapid Molding for Microlens Array.
    Liu X; Guo C; Liu Y; Wang F; Feng Y
    Polymers (Basel); 2021 Jul; 13(14):. PubMed ID: 34301091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transferability of Diffractive Structure in the Compression Molding of Chalcogenide Glass.
    Son BR; Kim JK; Choi YS; Park C
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36837972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermoforming mechanism of precision glass moulding.
    Liu W; Zhang L
    Appl Opt; 2015 Aug; 54(22):6841-9. PubMed ID: 26368100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pre-Compensation of Mold in Precision Glass Molding Based on Mathematical Analysis.
    Zhang Y; You K; Fang F
    Micromachines (Basel); 2020 Nov; 11(12):. PubMed ID: 33266257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of temperature on the molding of chalcogenide glass lenses for infrared imaging applications.
    Cha du H; Kim HJ; Park HS; Hwang Y; Kim JH; Hong JH; Lee KS
    Appl Opt; 2010 Mar; 49(9):1607-13. PubMed ID: 20300157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New testing and calculation method for determination viscoelasticity of optical glass.
    Zhang Y; Yin S; Liang R; Luo H; Xiao H; Yuan N
    Opt Express; 2020 Jan; 28(1):626-640. PubMed ID: 32118986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and development of an injection-molded demultiplexer for optical communication systems in the visible range.
    Höll S; Haupt M; Fischer UH
    Appl Opt; 2013 Jun; 52(18):4103-10. PubMed ID: 23842150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.