These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 31674389)

  • 1. General analysis and optimization strategy to suppress autofluorescence in microscope lenses.
    Lu X; Zhang Y; Gross H
    Appl Opt; 2019 Sep; 58(27):7404-7415. PubMed ID: 31674389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient simulation of autofluorescence effects in microscope lenses.
    Lu X; Rodenko O; Zhang Y; Gross H
    Appl Opt; 2019 May; 58(13):3589-3596. PubMed ID: 31044858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical imaging featuring both long working distance and high spatial resolution by correcting the aberration of a large aperture lens.
    Choi C; Song KD; Kang S; Park JS; Choi W
    Sci Rep; 2018 Jun; 8(1):9165. PubMed ID: 29907794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A complete and computationally efficient numerical model of aplanatic solid immersion lens scanning microscope.
    Chen R; Agarwal K; Sheppard CJ; Phang JC; Chen X
    Opt Express; 2013 Jun; 21(12):14316-30. PubMed ID: 23787620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical system design of double-sided telecentric microscope with high numerical aperture and long working distance.
    Zhang K; Li J; Sun S; Wang J; Yu S
    Opt Express; 2023 Jul; 31(14):23518-23532. PubMed ID: 37475433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous optical zoom microscopy imaging system based on liquid lenses.
    Jiang Z; Wang D; Zheng Y; Liu C; Wang QH
    Opt Express; 2021 Jun; 29(13):20322-20335. PubMed ID: 34266124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of axial scanning range and magnification variation in wide-field microscope for measurement using an electrically tunable lens.
    Qu Y; Hu Y
    Microsc Res Tech; 2019 Feb; 82(2):101-113. PubMed ID: 30451353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sub-micrometer resolution proximity X-ray microscope with digital image registration.
    Chkhalo NI; Pestov AE; Salashchenko NN; Sherbakov AV; Skorokhodov EV; Svechnikov MV
    Rev Sci Instrum; 2015 Jun; 86(6):063701. PubMed ID: 26133838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new high-aperture glycerol immersion objective lens and its application to 3D-fluorescence microscopy.
    Martini N; Bewersdorf J; Hell SW
    J Microsc; 2002 May; 206(Pt 2):146-51. PubMed ID: 12000554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Choosing objective lenses: the importance of numerical aperture and magnification in digital optical microscopy.
    Piston DW
    Biol Bull; 1998 Aug; 195(1):1-4. PubMed ID: 9739546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-efficiency fast X-ray imaging detector development at SSRF.
    Xie H; Luo H; Du G; Zhao C; Xu W; Zhou G; Chen R; Xiao T
    J Synchrotron Radiat; 2019 Sep; 26(Pt 5):1631-1637. PubMed ID: 31490153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Method of calculation of initial design parameters of microscope objective lenses with a long working distance.
    Mikš A; Novák J
    Appl Opt; 2022 Apr; 61(12):3288-3296. PubMed ID: 35471424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An index for human lens transparency related to age and lens layer: comparison between normal volunteers and diabetic patients with still clear lenses.
    Sasaki H; Hockwin O; Kasuga T; Nagai K; Sakamoto Y; Sasaki K
    Ophthalmic Res; 1999; 31(2):93-103. PubMed ID: 9933770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The blue-green autofluorescence of the human ocular lens after the wear of PMMA contact lenses.
    Boets EP; Kok JH; van Best JA
    Acta Ophthalmol (Copenh); 1994 Feb; 72(1):67-71. PubMed ID: 8017200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between autofluorescence and advanced glycation end products in diabetic lenses.
    Abiko T; Abiko A; Ishiko S; Takeda M; Horiuchi S; Yoshida A
    Exp Eye Res; 1999 Mar; 68(3):361-6. PubMed ID: 10079144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Customized aspheric IOL design by raytracing through the eye containing quadric surfaces.
    Langenbucher A; Eppig T; Seitz B; Janunts E
    Curr Eye Res; 2011 Jul; 36(7):637-46. PubMed ID: 21599465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient simulation of surface scattering in symmetry-free optical systems.
    Lu X; Gross H
    Opt Express; 2020 Dec; 28(26):39368-39386. PubMed ID: 33379488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A numerical analysis method for evaluating rod lenses using the Monte Carlo method.
    Yoshida S; Horiuchi S; Ushiyama Z; Yamamoto M
    Opt Express; 2010 Dec; 18(26):27016-27. PubMed ID: 21196978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of a liquid lens enabled in vivo optical coherence microscope.
    Murali S; Meemon P; Lee KS; Kuhn WP; Thompson KP; Rolland JP
    Appl Opt; 2010 Jun; 49(16):D145-56. PubMed ID: 20517356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical microscopy with flexible axial capabilities using a vari-focus liquid lens.
    Qu Y; Yang H
    J Microsc; 2015 Jun; 258(3):212-22. PubMed ID: 25817930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.