These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 31674400)

  • 1. Pressure-scaling characteristics of femtosecond two-photon laser-induced fluorescence of carbon monoxide.
    Rahman KA; Athmanathan V; Slipchenko MN; Meyer TR; Roy S
    Appl Opt; 2019 Sep; 58(27):7458-7465. PubMed ID: 31674400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectroscopic investigation of high-pressure femtosecond two-photon laser-induced fluorescence of carbon monoxide up to 20  bar.
    Wang Y; Kulatilaka WD
    Appl Opt; 2019 Apr; 58(10):C23-C29. PubMed ID: 31045027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Femtosecond, two-photon, laser-induced fluorescence (TP-LIF) measurement of CO in high-pressure flames.
    Rahman KA; Patel KS; Slipchenko MN; Meyer TR; Zhang Z; Wu Y; Gord JR; Roy S
    Appl Opt; 2018 Jul; 57(20):5666-5671. PubMed ID: 30118079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental Spectroscopic Studies of Carbon Monoxide (CO) Fluorescence at High Temperatures and Pressures.
    Carrivain O; Orain M; Dorval N; Morin C; Legros G
    Appl Spectrosc; 2017 Oct; 71(10):2353-2366. PubMed ID: 28523936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of Carbon Monoxide Two-Photon Laser-Induced Fluorescence (LIF) Spectra at High Temperature and Pressure.
    Carrivain O; Orain M; Dorval N; Morin C; Legros G
    Appl Spectrosc; 2020 Jun; 74(6):629-644. PubMed ID: 31617378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of three schemes of two-photon laser-induced fluorescence for CO detection in flames.
    Rosell J; Sjöholm J; Richter M; Aldén M
    Appl Spectrosc; 2013 Mar; 67(3):314-20. PubMed ID: 23452496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-photon-excited fluorescence of CO: experiments and modeling.
    Ruchkina M; Ding P; Aldén M; Bood J; Brackmann C
    Opt Express; 2019 Sep; 27(18):25656-25669. PubMed ID: 31510434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive CO detection in flames using femtosecond two-photon laser-induced fluorescence.
    Li B; Li X; Zhang D; Gao Q; Yao M; Li Z
    Opt Express; 2017 Oct; 25(21):25809-25818. PubMed ID: 29041244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. II. A-X(0,1) excitation.
    Bessler WG; Schulz C; Lee T; Jeffries JB; Hanson RK
    Appl Opt; 2003 Apr; 42(12):2031-42. PubMed ID: 12716143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategies for laser-induced fluorescence detection of nitric oxide in high-pressure flames. I. A-X(0,0) excitation.
    Bessler WG; Schulz C; Lee T; Jeffries JB; Hanson RK
    Appl Opt; 2002 Jun; 41(18):3547-57. PubMed ID: 12078680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of femtosecond and nanosecond two-photon-absorption laser-induced fluorescence of krypton.
    Grib SW; Hsu PS; Stauffer HU; Carter CD; Roy S
    Appl Opt; 2019 Sep; 58(27):7621-7627. PubMed ID: 31674418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-photon laser-induced fluorescence study of the CO B 1Σ+ (v' = 0) state in a 4850 K plasma plume: Modified molecular constants, evidence of predissociation, and J'-dependent photoionization.
    Murray JS; Clemens NT
    J Chem Phys; 2024 Jun; 160(24):. PubMed ID: 38912626
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Femtosecond, two-photon, planar laser-induced fluorescence of carbon monoxide in flames.
    Richardson DR; Roy S; Gord JR
    Opt Lett; 2017 Feb; 42(4):875-878. PubMed ID: 28198887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photodissociation dynamics of nitromethane at 226 and 271 nm at both nanosecond and femtosecond time scales.
    Guo YQ; Bhattacharya A; Bernstein ER
    J Phys Chem A; 2009 Jan; 113(1):85-96. PubMed ID: 19118481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of nanosecond and picosecond excitation for interference-free two-photon laser-induced fluorescence detection of atomic hydrogen in flames.
    Kulatilaka WD; Patterson BD; Frank JH; Settersten TB
    Appl Opt; 2008 Sep; 47(26):4672-83. PubMed ID: 18784770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative two-photon LIF imaging of carbon monoxide in combustion gases.
    Seitzman JM; Haumann J; Hanson RK
    Appl Opt; 1987 Jul; 26(14):2892-9. PubMed ID: 20489978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequential two-photon-laser-induced fluorescence: a new method for detecting atmospheric trace levels of NO.
    Bradshaw J; Davis DD
    Opt Lett; 1982 May; 7(5):224-6. PubMed ID: 19710879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Branching ratios for quenching of nitric oxide A 2Sigma+ (nu' = 0) to X 2Pi(nu' = 0).
    Settersten TB; Patterson BD; Kronemayer H; Sick V; Schulz C; Daily JW
    Phys Chem Chem Phys; 2006 Dec; 8(45):5328-38. PubMed ID: 19810411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-photon laser-induced fluorescence of atomic hydrogen in a diamond-depositing dc arcjet.
    Juchmann W; Luque J; Jeffries JB
    Appl Opt; 2005 Nov; 44(31):6644-52. PubMed ID: 16270553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pressure dependence of laser-induced fluorescence from acetone.
    Yuen LS; Peters JE; Lucht RP
    Appl Opt; 1997 May; 36(15):3271-7. PubMed ID: 18253335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.