These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 31674424)

  • 1. Transmission point spread function of a turbid slab.
    Rogers G
    J Opt Soc Am A Opt Image Sci Vis; 2019 Oct; 36(10):1617-1623. PubMed ID: 31674424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Equivalence of four Monte Carlo methods for photon migration in turbid media.
    Sassaroli A; Martelli F
    J Opt Soc Am A Opt Image Sci Vis; 2012 Oct; 29(10):2110-7. PubMed ID: 23201658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Error estimation of measuring total interaction coefficients of turbid media using collimated light transmission.
    Wang L; Jacques SL
    Phys Med Biol; 1994 Dec; 39(12):2349-54. PubMed ID: 15551558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photon migration through a turbid slab described by a model based on diffusion approximation. II. Comparison with Monte Carlo results.
    Martelli F; Contini D; Taddeucci A; Zaccanti G
    Appl Opt; 1997 Jul; 36(19):4600-12. PubMed ID: 18259255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An indeterministic Monte Carlo technique for fast time of flight photon transport through optically thick turbid media.
    Behin-Ain S; van Doorn T; Patterson JR
    Med Phys; 2002 Feb; 29(2):125-31. PubMed ID: 11865984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo simulations of increased/decreased scattering inclusions inside a turbid slab.
    Dagdug L; Chernomordik V; Weiss GH; Gandjbakhche AH
    Phys Med Biol; 2005 Dec; 50(23):5573-81. PubMed ID: 16306653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forward scattering of polarized light from birefringent turbid slab media: Monte Carlo simulation.
    Otsuki S
    J Opt Soc Am A Opt Image Sci Vis; 2018 Mar; 35(3):406-416. PubMed ID: 29522042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo simulation of optical coherence tomography for turbid media with arbitrary spatial distributions.
    Malektaji S; Lima IT; Sherif SS
    J Biomed Opt; 2014 Apr; 19(4):046001. PubMed ID: 24695845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epifluorescence collection in two-photon microscopy.
    Beaurepaire E; Mertz J
    Appl Opt; 2002 Sep; 41(25):5376-82. PubMed ID: 12211567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the telegrapher's equation and multiple-flux theories for calculating the transmittance and reflectance of a diffuse absorbing slab.
    Kong SH; Shore JD
    J Opt Soc Am A Opt Image Sci Vis; 2007 Mar; 24(3):702-10. PubMed ID: 17301860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo study of pathlength distribution of polarized light in turbid media.
    Guo X; Wood MF; Vitkin A
    Opt Express; 2007 Feb; 15(3):1348-60. PubMed ID: 19532365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the Yule-Nielsen effect with the multiple-path point spread function in a frequency-modulated halftone.
    Rogers G
    J Opt Soc Am A Opt Image Sci Vis; 2018 Jun; 35(6):916-922. PubMed ID: 29877335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation study of second-harmonic microscopic imaging signals through tissue-like turbid media.
    Deng X; Wang X; Liu H; Zhuang Z; Guo Z
    J Biomed Opt; 2006; 11(2):024013. PubMed ID: 16674203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser light scattering in turbid media Part II: Spatial and temporal analysis of individual scattering orders via Monte Carlo simulation.
    Berrocal E; Sedarsky DL; Paciaroni ME; Meglinski IV; Linne MA
    Opt Express; 2009 Aug; 17(16):13792-809. PubMed ID: 19654786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid modeling of diffuse reflectance of light in turbid slabs.
    Wang LV
    J Opt Soc Am A Opt Image Sci Vis; 1998 Apr; 15(4):936-44. PubMed ID: 9536515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective point-spread function for fast image modeling and processing in microscopic imaging through turbid media.
    Gan X; Gu M
    Opt Lett; 1999 Jun; 24(11):741-3. PubMed ID: 18073840
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial and angular distribution of light incident on coatings using Mie-scattering Monte Carlo simulations.
    Yamada M; Butts MD; Kalla KK
    J Cosmet Sci; 2005; 56(3):193-204. PubMed ID: 16116524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The vacuum geometry effect on neutron transmission and spatial resolution of neutron transmission.
    Khanouchi A; Sabir A; Boulkheir M; Ichaoui R; Ghassoun J; Jehouani A
    Appl Radiat Isot; 1997; 48(10-12):1663-6. PubMed ID: 9463882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid simulation of steady-state spatially resolved reflectance and transmittance profiles of multilayered turbid materials.
    Donner C; Jensen HW
    J Opt Soc Am A Opt Image Sci Vis; 2006 Jun; 23(6):1382-90. PubMed ID: 16715157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of the point spread function for light in tissue by a Monte Carlo method.
    Van der Zee P; Delpy DT
    Adv Exp Med Biol; 1987; 215():179-91. PubMed ID: 3673719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.